| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climrec.1 |
|
| 2 |
|
climrec.2 |
|
| 3 |
|
climrec.3 |
|
| 4 |
|
climrec.4 |
|
| 5 |
|
climrec.5 |
|
| 6 |
|
climrec.6 |
|
| 7 |
|
climrec.7 |
|
| 8 |
|
climcl |
|
| 9 |
3 8
|
syl |
|
| 10 |
4
|
neneqd |
|
| 11 |
|
c0ex |
|
| 12 |
11
|
elsn2 |
|
| 13 |
10 12
|
sylnibr |
|
| 14 |
9 13
|
eldifd |
|
| 15 |
|
eqidd |
|
| 16 |
|
simpr |
|
| 17 |
16
|
oveq2d |
|
| 18 |
|
simpr |
|
| 19 |
18
|
eldifad |
|
| 20 |
|
eldifsni |
|
| 21 |
20
|
adantl |
|
| 22 |
19 21
|
reccld |
|
| 23 |
15 17 18 22
|
fvmptd |
|
| 24 |
23 22
|
eqeltrd |
|
| 25 |
|
eqid |
|
| 26 |
25
|
reccn2 |
|
| 27 |
14 26
|
sylan |
|
| 28 |
|
eqidd |
|
| 29 |
|
simpr |
|
| 30 |
29
|
oveq2d |
|
| 31 |
|
id |
|
| 32 |
|
eldifi |
|
| 33 |
32 20
|
reccld |
|
| 34 |
28 30 31 33
|
fvmptd |
|
| 35 |
34
|
ad2antlr |
|
| 36 |
|
eqidd |
|
| 37 |
|
simpr |
|
| 38 |
37
|
oveq2d |
|
| 39 |
9 4
|
reccld |
|
| 40 |
36 38 14 39
|
fvmptd |
|
| 41 |
40
|
ad4antr |
|
| 42 |
35 41
|
oveq12d |
|
| 43 |
42
|
fveq2d |
|
| 44 |
31
|
ad2antlr |
|
| 45 |
|
simpr |
|
| 46 |
|
simpllr |
|
| 47 |
44 45 46
|
mp2d |
|
| 48 |
43 47
|
eqbrtrd |
|
| 49 |
48
|
exp41 |
|
| 50 |
49
|
ralimdv2 |
|
| 51 |
50
|
reximdv |
|
| 52 |
27 51
|
mpd |
|
| 53 |
|
eqidd |
|
| 54 |
|
oveq2 |
|
| 55 |
54
|
adantl |
|
| 56 |
5
|
eldifad |
|
| 57 |
|
eldifsni |
|
| 58 |
5 57
|
syl |
|
| 59 |
56 58
|
reccld |
|
| 60 |
53 55 5 59
|
fvmptd |
|
| 61 |
6 60
|
eqtr4d |
|
| 62 |
1 2 14 24 3 7 52 5 61
|
climcn1 |
|
| 63 |
62 40
|
breqtrd |
|