Metamath Proof Explorer


Theorem climmulf

Description: A version of climmul using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses climmulf.1 𝑘 𝜑
climmulf.2 𝑘 𝐹
climmulf.3 𝑘 𝐺
climmulf.4 𝑘 𝐻
climmulf.5 𝑍 = ( ℤ𝑀 )
climmulf.6 ( 𝜑𝑀 ∈ ℤ )
climmulf.7 ( 𝜑𝐹𝐴 )
climmulf.8 ( 𝜑𝐻𝑋 )
climmulf.9 ( 𝜑𝐺𝐵 )
climmulf.10 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
climmulf.11 ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) ∈ ℂ )
climmulf.12 ( ( 𝜑𝑘𝑍 ) → ( 𝐻𝑘 ) = ( ( 𝐹𝑘 ) · ( 𝐺𝑘 ) ) )
Assertion climmulf ( 𝜑𝐻 ⇝ ( 𝐴 · 𝐵 ) )

Proof

Step Hyp Ref Expression
1 climmulf.1 𝑘 𝜑
2 climmulf.2 𝑘 𝐹
3 climmulf.3 𝑘 𝐺
4 climmulf.4 𝑘 𝐻
5 climmulf.5 𝑍 = ( ℤ𝑀 )
6 climmulf.6 ( 𝜑𝑀 ∈ ℤ )
7 climmulf.7 ( 𝜑𝐹𝐴 )
8 climmulf.8 ( 𝜑𝐻𝑋 )
9 climmulf.9 ( 𝜑𝐺𝐵 )
10 climmulf.10 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
11 climmulf.11 ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) ∈ ℂ )
12 climmulf.12 ( ( 𝜑𝑘𝑍 ) → ( 𝐻𝑘 ) = ( ( 𝐹𝑘 ) · ( 𝐺𝑘 ) ) )
13 nfcv 𝑘 𝑗
14 13 nfel1 𝑘 𝑗𝑍
15 1 14 nfan 𝑘 ( 𝜑𝑗𝑍 )
16 2 13 nffv 𝑘 ( 𝐹𝑗 )
17 16 nfel1 𝑘 ( 𝐹𝑗 ) ∈ ℂ
18 15 17 nfim 𝑘 ( ( 𝜑𝑗𝑍 ) → ( 𝐹𝑗 ) ∈ ℂ )
19 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝑍𝑗𝑍 ) )
20 19 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝑍 ) ↔ ( 𝜑𝑗𝑍 ) ) )
21 fveq2 ( 𝑘 = 𝑗 → ( 𝐹𝑘 ) = ( 𝐹𝑗 ) )
22 21 eleq1d ( 𝑘 = 𝑗 → ( ( 𝐹𝑘 ) ∈ ℂ ↔ ( 𝐹𝑗 ) ∈ ℂ ) )
23 20 22 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ ) ↔ ( ( 𝜑𝑗𝑍 ) → ( 𝐹𝑗 ) ∈ ℂ ) ) )
24 18 23 10 chvarfv ( ( 𝜑𝑗𝑍 ) → ( 𝐹𝑗 ) ∈ ℂ )
25 3 13 nffv 𝑘 ( 𝐺𝑗 )
26 25 nfel1 𝑘 ( 𝐺𝑗 ) ∈ ℂ
27 15 26 nfim 𝑘 ( ( 𝜑𝑗𝑍 ) → ( 𝐺𝑗 ) ∈ ℂ )
28 fveq2 ( 𝑘 = 𝑗 → ( 𝐺𝑘 ) = ( 𝐺𝑗 ) )
29 28 eleq1d ( 𝑘 = 𝑗 → ( ( 𝐺𝑘 ) ∈ ℂ ↔ ( 𝐺𝑗 ) ∈ ℂ ) )
30 20 29 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) ∈ ℂ ) ↔ ( ( 𝜑𝑗𝑍 ) → ( 𝐺𝑗 ) ∈ ℂ ) ) )
31 27 30 11 chvarfv ( ( 𝜑𝑗𝑍 ) → ( 𝐺𝑗 ) ∈ ℂ )
32 4 13 nffv 𝑘 ( 𝐻𝑗 )
33 nfcv 𝑘 ·
34 16 33 25 nfov 𝑘 ( ( 𝐹𝑗 ) · ( 𝐺𝑗 ) )
35 32 34 nfeq 𝑘 ( 𝐻𝑗 ) = ( ( 𝐹𝑗 ) · ( 𝐺𝑗 ) )
36 15 35 nfim 𝑘 ( ( 𝜑𝑗𝑍 ) → ( 𝐻𝑗 ) = ( ( 𝐹𝑗 ) · ( 𝐺𝑗 ) ) )
37 fveq2 ( 𝑘 = 𝑗 → ( 𝐻𝑘 ) = ( 𝐻𝑗 ) )
38 21 28 oveq12d ( 𝑘 = 𝑗 → ( ( 𝐹𝑘 ) · ( 𝐺𝑘 ) ) = ( ( 𝐹𝑗 ) · ( 𝐺𝑗 ) ) )
39 37 38 eqeq12d ( 𝑘 = 𝑗 → ( ( 𝐻𝑘 ) = ( ( 𝐹𝑘 ) · ( 𝐺𝑘 ) ) ↔ ( 𝐻𝑗 ) = ( ( 𝐹𝑗 ) · ( 𝐺𝑗 ) ) ) )
40 20 39 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑍 ) → ( 𝐻𝑘 ) = ( ( 𝐹𝑘 ) · ( 𝐺𝑘 ) ) ) ↔ ( ( 𝜑𝑗𝑍 ) → ( 𝐻𝑗 ) = ( ( 𝐹𝑗 ) · ( 𝐺𝑗 ) ) ) ) )
41 36 40 12 chvarfv ( ( 𝜑𝑗𝑍 ) → ( 𝐻𝑗 ) = ( ( 𝐹𝑗 ) · ( 𝐺𝑗 ) ) )
42 5 6 7 8 9 24 31 41 climmul ( 𝜑𝐻 ⇝ ( 𝐴 · 𝐵 ) )