| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climexp.1 | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | climexp.2 | ⊢ Ⅎ 𝑘 𝐹 | 
						
							| 3 |  | climexp.3 | ⊢ Ⅎ 𝑘 𝐻 | 
						
							| 4 |  | climexp.4 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 5 |  | climexp.5 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 6 |  | climexp.6 | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℂ ) | 
						
							| 7 |  | climexp.7 | ⊢ ( 𝜑  →  𝐹  ⇝  𝐴 ) | 
						
							| 8 |  | climexp.8 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 9 |  | climexp.9 | ⊢ ( 𝜑  →  𝐻  ∈  𝑉 ) | 
						
							| 10 |  | climexp.10 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 ) ↑ 𝑁 ) ) | 
						
							| 11 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 12 | 11 | expcn | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 13 | 8 12 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 14 | 11 | cncfcn1 | ⊢ ( ℂ –cn→ ℂ )  =  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 15 | 13 14 | eleqtrrdi | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 16 |  | climcl | ⊢ ( 𝐹  ⇝  𝐴  →  𝐴  ∈  ℂ ) | 
						
							| 17 | 7 16 | syl | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 18 | 4 5 15 6 7 17 | climcncf | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  ∘  𝐹 )  ⇝  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) ) ‘ 𝐴 ) ) | 
						
							| 19 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  =  ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) ) ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  𝑥  =  𝐴 ) | 
						
							| 21 | 20 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  ( 𝑥 ↑ 𝑁 )  =  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 22 | 17 8 | expcld | ⊢ ( 𝜑  →  ( 𝐴 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 23 | 19 21 17 22 | fvmptd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) ) ‘ 𝐴 )  =  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 24 | 18 23 | breqtrd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  ∘  𝐹 )  ⇝  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 25 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 26 | 25 | mptex | ⊢ ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  ∈  V | 
						
							| 27 | 4 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 28 |  | fex | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℂ  ∧  𝑍  ∈  V )  →  𝐹  ∈  V ) | 
						
							| 29 | 6 27 28 | sylancl | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 30 |  | coexg | ⊢ ( ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  ∈  V  ∧  𝐹  ∈  V )  →  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  ∘  𝐹 )  ∈  V ) | 
						
							| 31 | 26 29 30 | sylancr | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  ∘  𝐹 )  ∈  V ) | 
						
							| 32 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  =  ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) ) ) | 
						
							| 33 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  =  ( 𝐹 ‘ 𝑗 ) )  →  𝑥  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 34 | 33 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  =  ( 𝐹 ‘ 𝑗 ) )  →  ( 𝑥 ↑ 𝑁 )  =  ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) | 
						
							| 35 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 36 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 37 | 35 36 | expcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 38 | 32 34 35 37 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑗 ) )  =  ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) | 
						
							| 39 |  | fvco3 | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℂ  ∧  𝑗  ∈  𝑍 )  →  ( ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  ∘  𝐹 ) ‘ 𝑗 )  =  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 40 | 6 39 | sylan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  ∘  𝐹 ) ‘ 𝑗 )  =  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 41 |  | nfv | ⊢ Ⅎ 𝑘 𝑗  ∈  𝑍 | 
						
							| 42 | 1 41 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑗  ∈  𝑍 ) | 
						
							| 43 |  | nfcv | ⊢ Ⅎ 𝑘 𝑗 | 
						
							| 44 | 3 43 | nffv | ⊢ Ⅎ 𝑘 ( 𝐻 ‘ 𝑗 ) | 
						
							| 45 | 2 43 | nffv | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) | 
						
							| 46 |  | nfcv | ⊢ Ⅎ 𝑘 ↑ | 
						
							| 47 |  | nfcv | ⊢ Ⅎ 𝑘 𝑁 | 
						
							| 48 | 45 46 47 | nfov | ⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) | 
						
							| 49 | 44 48 | nfeq | ⊢ Ⅎ 𝑘 ( 𝐻 ‘ 𝑗 )  =  ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) | 
						
							| 50 | 42 49 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑗 )  =  ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) | 
						
							| 51 |  | eleq1w | ⊢ ( 𝑘  =  𝑗  →  ( 𝑘  ∈  𝑍  ↔  𝑗  ∈  𝑍 ) ) | 
						
							| 52 | 51 | anbi2d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ↔  ( 𝜑  ∧  𝑗  ∈  𝑍 ) ) ) | 
						
							| 53 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝐻 ‘ 𝑘 )  =  ( 𝐻 ‘ 𝑗 ) ) | 
						
							| 54 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 55 | 54 | oveq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝐹 ‘ 𝑘 ) ↑ 𝑁 )  =  ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) | 
						
							| 56 | 53 55 | eqeq12d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝐻 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 ) ↑ 𝑁 )  ↔  ( 𝐻 ‘ 𝑗 )  =  ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) ) | 
						
							| 57 | 52 56 | imbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 ) ↑ 𝑁 ) )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑗 )  =  ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) ) ) | 
						
							| 58 | 50 57 10 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑗 )  =  ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) | 
						
							| 59 | 38 40 58 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑗 )  =  ( ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  ∘  𝐹 ) ‘ 𝑗 ) ) | 
						
							| 60 | 4 9 31 5 59 | climeq | ⊢ ( 𝜑  →  ( 𝐻  ⇝  ( 𝐴 ↑ 𝑁 )  ↔  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  ∘  𝐹 )  ⇝  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 61 | 24 60 | mpbird | ⊢ ( 𝜑  →  𝐻  ⇝  ( 𝐴 ↑ 𝑁 ) ) |