| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climexp.1 |  |-  F/ k ph | 
						
							| 2 |  | climexp.2 |  |-  F/_ k F | 
						
							| 3 |  | climexp.3 |  |-  F/_ k H | 
						
							| 4 |  | climexp.4 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 5 |  | climexp.5 |  |-  ( ph -> M e. ZZ ) | 
						
							| 6 |  | climexp.6 |  |-  ( ph -> F : Z --> CC ) | 
						
							| 7 |  | climexp.7 |  |-  ( ph -> F ~~> A ) | 
						
							| 8 |  | climexp.8 |  |-  ( ph -> N e. NN0 ) | 
						
							| 9 |  | climexp.9 |  |-  ( ph -> H e. V ) | 
						
							| 10 |  | climexp.10 |  |-  ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) ^ N ) ) | 
						
							| 11 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 12 | 11 | expcn |  |-  ( N e. NN0 -> ( x e. CC |-> ( x ^ N ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 13 | 8 12 | syl |  |-  ( ph -> ( x e. CC |-> ( x ^ N ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 14 | 11 | cncfcn1 |  |-  ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 15 | 13 14 | eleqtrrdi |  |-  ( ph -> ( x e. CC |-> ( x ^ N ) ) e. ( CC -cn-> CC ) ) | 
						
							| 16 |  | climcl |  |-  ( F ~~> A -> A e. CC ) | 
						
							| 17 | 7 16 | syl |  |-  ( ph -> A e. CC ) | 
						
							| 18 | 4 5 15 6 7 17 | climcncf |  |-  ( ph -> ( ( x e. CC |-> ( x ^ N ) ) o. F ) ~~> ( ( x e. CC |-> ( x ^ N ) ) ` A ) ) | 
						
							| 19 |  | eqidd |  |-  ( ph -> ( x e. CC |-> ( x ^ N ) ) = ( x e. CC |-> ( x ^ N ) ) ) | 
						
							| 20 |  | simpr |  |-  ( ( ph /\ x = A ) -> x = A ) | 
						
							| 21 | 20 | oveq1d |  |-  ( ( ph /\ x = A ) -> ( x ^ N ) = ( A ^ N ) ) | 
						
							| 22 | 17 8 | expcld |  |-  ( ph -> ( A ^ N ) e. CC ) | 
						
							| 23 | 19 21 17 22 | fvmptd |  |-  ( ph -> ( ( x e. CC |-> ( x ^ N ) ) ` A ) = ( A ^ N ) ) | 
						
							| 24 | 18 23 | breqtrd |  |-  ( ph -> ( ( x e. CC |-> ( x ^ N ) ) o. F ) ~~> ( A ^ N ) ) | 
						
							| 25 |  | cnex |  |-  CC e. _V | 
						
							| 26 | 25 | mptex |  |-  ( x e. CC |-> ( x ^ N ) ) e. _V | 
						
							| 27 | 4 | fvexi |  |-  Z e. _V | 
						
							| 28 |  | fex |  |-  ( ( F : Z --> CC /\ Z e. _V ) -> F e. _V ) | 
						
							| 29 | 6 27 28 | sylancl |  |-  ( ph -> F e. _V ) | 
						
							| 30 |  | coexg |  |-  ( ( ( x e. CC |-> ( x ^ N ) ) e. _V /\ F e. _V ) -> ( ( x e. CC |-> ( x ^ N ) ) o. F ) e. _V ) | 
						
							| 31 | 26 29 30 | sylancr |  |-  ( ph -> ( ( x e. CC |-> ( x ^ N ) ) o. F ) e. _V ) | 
						
							| 32 |  | eqidd |  |-  ( ( ph /\ j e. Z ) -> ( x e. CC |-> ( x ^ N ) ) = ( x e. CC |-> ( x ^ N ) ) ) | 
						
							| 33 |  | simpr |  |-  ( ( ( ph /\ j e. Z ) /\ x = ( F ` j ) ) -> x = ( F ` j ) ) | 
						
							| 34 | 33 | oveq1d |  |-  ( ( ( ph /\ j e. Z ) /\ x = ( F ` j ) ) -> ( x ^ N ) = ( ( F ` j ) ^ N ) ) | 
						
							| 35 | 6 | ffvelcdmda |  |-  ( ( ph /\ j e. Z ) -> ( F ` j ) e. CC ) | 
						
							| 36 | 8 | adantr |  |-  ( ( ph /\ j e. Z ) -> N e. NN0 ) | 
						
							| 37 | 35 36 | expcld |  |-  ( ( ph /\ j e. Z ) -> ( ( F ` j ) ^ N ) e. CC ) | 
						
							| 38 | 32 34 35 37 | fvmptd |  |-  ( ( ph /\ j e. Z ) -> ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` j ) ) = ( ( F ` j ) ^ N ) ) | 
						
							| 39 |  | fvco3 |  |-  ( ( F : Z --> CC /\ j e. Z ) -> ( ( ( x e. CC |-> ( x ^ N ) ) o. F ) ` j ) = ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` j ) ) ) | 
						
							| 40 | 6 39 | sylan |  |-  ( ( ph /\ j e. Z ) -> ( ( ( x e. CC |-> ( x ^ N ) ) o. F ) ` j ) = ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` j ) ) ) | 
						
							| 41 |  | nfv |  |-  F/ k j e. Z | 
						
							| 42 | 1 41 | nfan |  |-  F/ k ( ph /\ j e. Z ) | 
						
							| 43 |  | nfcv |  |-  F/_ k j | 
						
							| 44 | 3 43 | nffv |  |-  F/_ k ( H ` j ) | 
						
							| 45 | 2 43 | nffv |  |-  F/_ k ( F ` j ) | 
						
							| 46 |  | nfcv |  |-  F/_ k ^ | 
						
							| 47 |  | nfcv |  |-  F/_ k N | 
						
							| 48 | 45 46 47 | nfov |  |-  F/_ k ( ( F ` j ) ^ N ) | 
						
							| 49 | 44 48 | nfeq |  |-  F/ k ( H ` j ) = ( ( F ` j ) ^ N ) | 
						
							| 50 | 42 49 | nfim |  |-  F/ k ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( F ` j ) ^ N ) ) | 
						
							| 51 |  | eleq1w |  |-  ( k = j -> ( k e. Z <-> j e. Z ) ) | 
						
							| 52 | 51 | anbi2d |  |-  ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) | 
						
							| 53 |  | fveq2 |  |-  ( k = j -> ( H ` k ) = ( H ` j ) ) | 
						
							| 54 |  | fveq2 |  |-  ( k = j -> ( F ` k ) = ( F ` j ) ) | 
						
							| 55 | 54 | oveq1d |  |-  ( k = j -> ( ( F ` k ) ^ N ) = ( ( F ` j ) ^ N ) ) | 
						
							| 56 | 53 55 | eqeq12d |  |-  ( k = j -> ( ( H ` k ) = ( ( F ` k ) ^ N ) <-> ( H ` j ) = ( ( F ` j ) ^ N ) ) ) | 
						
							| 57 | 52 56 | imbi12d |  |-  ( k = j -> ( ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) ^ N ) ) <-> ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( F ` j ) ^ N ) ) ) ) | 
						
							| 58 | 50 57 10 | chvarfv |  |-  ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( F ` j ) ^ N ) ) | 
						
							| 59 | 38 40 58 | 3eqtr4rd |  |-  ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( ( x e. CC |-> ( x ^ N ) ) o. F ) ` j ) ) | 
						
							| 60 | 4 9 31 5 59 | climeq |  |-  ( ph -> ( H ~~> ( A ^ N ) <-> ( ( x e. CC |-> ( x ^ N ) ) o. F ) ~~> ( A ^ N ) ) ) | 
						
							| 61 | 24 60 | mpbird |  |-  ( ph -> H ~~> ( A ^ N ) ) |