Metamath Proof Explorer


Theorem cncfcn1

Description: Relate complex function continuity to topological continuity. (Contributed by Paul Chapman, 28-Nov-2007) (Revised by Mario Carneiro, 7-Sep-2015)

Ref Expression
Hypothesis cncfcn1.1
|- J = ( TopOpen ` CCfld )
Assertion cncfcn1
|- ( CC -cn-> CC ) = ( J Cn J )

Proof

Step Hyp Ref Expression
1 cncfcn1.1
 |-  J = ( TopOpen ` CCfld )
2 ssid
 |-  CC C_ CC
3 1 cnfldtopon
 |-  J e. ( TopOn ` CC )
4 3 toponrestid
 |-  J = ( J |`t CC )
5 1 4 4 cncfcn
 |-  ( ( CC C_ CC /\ CC C_ CC ) -> ( CC -cn-> CC ) = ( J Cn J ) )
6 2 2 5 mp2an
 |-  ( CC -cn-> CC ) = ( J Cn J )