Description: Relate complex function continuity to topological continuity. (Contributed by Paul Chapman, 28-Nov-2007) (Revised by Mario Carneiro, 7-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cncfcn1.1 | |- J = ( TopOpen ` CCfld ) |
|
Assertion | cncfcn1 | |- ( CC -cn-> CC ) = ( J Cn J ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfcn1.1 | |- J = ( TopOpen ` CCfld ) |
|
2 | ssid | |- CC C_ CC |
|
3 | 1 | cnfldtopon | |- J e. ( TopOn ` CC ) |
4 | 3 | toponrestid | |- J = ( J |`t CC ) |
5 | 1 4 4 | cncfcn | |- ( ( CC C_ CC /\ CC C_ CC ) -> ( CC -cn-> CC ) = ( J Cn J ) ) |
6 | 2 2 5 | mp2an | |- ( CC -cn-> CC ) = ( J Cn J ) |