Database
BASIC TOPOLOGY
Metric spaces
Topological definitions using the reals
cncfcn1
Metamath Proof Explorer
Description: Relate complex function continuity to topological continuity.
(Contributed by Paul Chapman , 28-Nov-2007) (Revised by Mario Carneiro , 7-Sep-2015)
Ref
Expression
Hypothesis
cncfcn1.1
⊢ 𝐽 = ( TopOpen ‘ ℂfld )
Assertion
cncfcn1
⊢ ( ℂ –cn → ℂ ) = ( 𝐽 Cn 𝐽 )
Proof
Step
Hyp
Ref
Expression
1
cncfcn1.1
⊢ 𝐽 = ( TopOpen ‘ ℂfld )
2
ssid
⊢ ℂ ⊆ ℂ
3
1
cnfldtopon
⊢ 𝐽 ∈ ( TopOn ‘ ℂ )
4
3
toponrestid
⊢ 𝐽 = ( 𝐽 ↾t ℂ )
5
1 4 4
cncfcn
⊢ ( ( ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℂ –cn → ℂ ) = ( 𝐽 Cn 𝐽 ) )
6
2 2 5
mp2an
⊢ ( ℂ –cn → ℂ ) = ( 𝐽 Cn 𝐽 )