Metamath Proof Explorer


Theorem cncfmptc

Description: A constant function is a continuous function on CC . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 7-Sep-2015)

Ref Expression
Assertion cncfmptc ( ( 𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( 𝑥𝑆𝐴 ) ∈ ( 𝑆cn𝑇 ) )

Proof

Step Hyp Ref Expression
1 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
2 1 cnfldtopon ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ )
3 simp2 ( ( 𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → 𝑆 ⊆ ℂ )
4 resttopon ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) )
5 2 3 4 sylancr ( ( 𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) )
6 simp3 ( ( 𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → 𝑇 ⊆ ℂ )
7 resttopon ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑇 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) ∈ ( TopOn ‘ 𝑇 ) )
8 2 6 7 sylancr ( ( 𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) ∈ ( TopOn ‘ 𝑇 ) )
9 simp1 ( ( 𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → 𝐴𝑇 )
10 5 8 9 cnmptc ( ( 𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( 𝑥𝑆𝐴 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) ) )
11 eqid ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 )
12 eqid ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 )
13 1 11 12 cncfcn ( ( 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( 𝑆cn𝑇 ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) ) )
14 13 3adant1 ( ( 𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( 𝑆cn𝑇 ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) ) )
15 10 14 eleqtrrd ( ( 𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( 𝑥𝑆𝐴 ) ∈ ( 𝑆cn𝑇 ) )