Metamath Proof Explorer


Theorem cncfmptid

Description: The identity function is a continuous function on CC . (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 17-May-2016)

Ref Expression
Assertion cncfmptid ( ( 𝑆𝑇𝑇 ⊆ ℂ ) → ( 𝑥𝑆𝑥 ) ∈ ( 𝑆cn𝑇 ) )

Proof

Step Hyp Ref Expression
1 cncfss ( ( 𝑆𝑇𝑇 ⊆ ℂ ) → ( 𝑆cn𝑆 ) ⊆ ( 𝑆cn𝑇 ) )
2 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
3 2 cnfldtopon ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ )
4 sstr ( ( 𝑆𝑇𝑇 ⊆ ℂ ) → 𝑆 ⊆ ℂ )
5 resttopon ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) )
6 3 4 5 sylancr ( ( 𝑆𝑇𝑇 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) )
7 6 cnmptid ( ( 𝑆𝑇𝑇 ⊆ ℂ ) → ( 𝑥𝑆𝑥 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) )
8 eqid ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 )
9 2 8 8 cncfcn ( ( 𝑆 ⊆ ℂ ∧ 𝑆 ⊆ ℂ ) → ( 𝑆cn𝑆 ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) )
10 4 4 9 syl2anc ( ( 𝑆𝑇𝑇 ⊆ ℂ ) → ( 𝑆cn𝑆 ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) )
11 7 10 eleqtrrd ( ( 𝑆𝑇𝑇 ⊆ ℂ ) → ( 𝑥𝑆𝑥 ) ∈ ( 𝑆cn𝑆 ) )
12 1 11 sseldd ( ( 𝑆𝑇𝑇 ⊆ ℂ ) → ( 𝑥𝑆𝑥 ) ∈ ( 𝑆cn𝑇 ) )