| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncfss |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( 𝑆 –cn→ 𝑆 ) ⊆ ( 𝑆 –cn→ 𝑇 ) ) |
| 2 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 3 |
2
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 4 |
|
sstr |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → 𝑆 ⊆ ℂ ) |
| 5 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 6 |
3 4 5
|
sylancr |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 7 |
6
|
cnmptid |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( 𝑥 ∈ 𝑆 ↦ 𝑥 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ) |
| 8 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
| 9 |
2 8 8
|
cncfcn |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑆 ⊆ ℂ ) → ( 𝑆 –cn→ 𝑆 ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ) |
| 10 |
4 4 9
|
syl2anc |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( 𝑆 –cn→ 𝑆 ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ) |
| 11 |
7 10
|
eleqtrrd |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( 𝑥 ∈ 𝑆 ↦ 𝑥 ) ∈ ( 𝑆 –cn→ 𝑆 ) ) |
| 12 |
1 11
|
sseldd |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( 𝑥 ∈ 𝑆 ↦ 𝑥 ) ∈ ( 𝑆 –cn→ 𝑇 ) ) |