Step |
Hyp |
Ref |
Expression |
1 |
|
cncfcn.2 |
|- J = ( TopOpen ` CCfld ) |
2 |
|
cncfcn.3 |
|- K = ( J |`t A ) |
3 |
|
cncfcn.4 |
|- L = ( J |`t B ) |
4 |
|
eqid |
|- ( ( abs o. - ) |` ( A X. A ) ) = ( ( abs o. - ) |` ( A X. A ) ) |
5 |
|
eqid |
|- ( ( abs o. - ) |` ( B X. B ) ) = ( ( abs o. - ) |` ( B X. B ) ) |
6 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) |
7 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( B X. B ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( B X. B ) ) ) |
8 |
4 5 6 7
|
cncfmet |
|- ( ( A C_ CC /\ B C_ CC ) -> ( A -cn-> B ) = ( ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) Cn ( MetOpen ` ( ( abs o. - ) |` ( B X. B ) ) ) ) ) |
9 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
10 |
|
simpl |
|- ( ( A C_ CC /\ B C_ CC ) -> A C_ CC ) |
11 |
1
|
cnfldtopn |
|- J = ( MetOpen ` ( abs o. - ) ) |
12 |
4 11 6
|
metrest |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ A C_ CC ) -> ( J |`t A ) = ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) ) |
13 |
9 10 12
|
sylancr |
|- ( ( A C_ CC /\ B C_ CC ) -> ( J |`t A ) = ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) ) |
14 |
2 13
|
eqtrid |
|- ( ( A C_ CC /\ B C_ CC ) -> K = ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) ) |
15 |
|
simpr |
|- ( ( A C_ CC /\ B C_ CC ) -> B C_ CC ) |
16 |
5 11 7
|
metrest |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ B C_ CC ) -> ( J |`t B ) = ( MetOpen ` ( ( abs o. - ) |` ( B X. B ) ) ) ) |
17 |
9 15 16
|
sylancr |
|- ( ( A C_ CC /\ B C_ CC ) -> ( J |`t B ) = ( MetOpen ` ( ( abs o. - ) |` ( B X. B ) ) ) ) |
18 |
3 17
|
eqtrid |
|- ( ( A C_ CC /\ B C_ CC ) -> L = ( MetOpen ` ( ( abs o. - ) |` ( B X. B ) ) ) ) |
19 |
14 18
|
oveq12d |
|- ( ( A C_ CC /\ B C_ CC ) -> ( K Cn L ) = ( ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) Cn ( MetOpen ` ( ( abs o. - ) |` ( B X. B ) ) ) ) ) |
20 |
8 19
|
eqtr4d |
|- ( ( A C_ CC /\ B C_ CC ) -> ( A -cn-> B ) = ( K Cn L ) ) |