Metamath Proof Explorer


Theorem climexp

Description: The limit of natural powers, is the natural power of the limit. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses climexp.1 kφ
climexp.2 _kF
climexp.3 _kH
climexp.4 Z=M
climexp.5 φM
climexp.6 φF:Z
climexp.7 φFA
climexp.8 φN0
climexp.9 φHV
climexp.10 φkZHk=FkN
Assertion climexp φHAN

Proof

Step Hyp Ref Expression
1 climexp.1 kφ
2 climexp.2 _kF
3 climexp.3 _kH
4 climexp.4 Z=M
5 climexp.5 φM
6 climexp.6 φF:Z
7 climexp.7 φFA
8 climexp.8 φN0
9 climexp.9 φHV
10 climexp.10 φkZHk=FkN
11 eqid TopOpenfld=TopOpenfld
12 11 expcn N0xxNTopOpenfldCnTopOpenfld
13 8 12 syl φxxNTopOpenfldCnTopOpenfld
14 11 cncfcn1 cn=TopOpenfldCnTopOpenfld
15 13 14 eleqtrrdi φxxN:cn
16 climcl FAA
17 7 16 syl φA
18 4 5 15 6 7 17 climcncf φxxNFxxNA
19 eqidd φxxN=xxN
20 simpr φx=Ax=A
21 20 oveq1d φx=AxN=AN
22 17 8 expcld φAN
23 19 21 17 22 fvmptd φxxNA=AN
24 18 23 breqtrd φxxNFAN
25 cnex V
26 25 mptex xxNV
27 4 fvexi ZV
28 fex F:ZZVFV
29 6 27 28 sylancl φFV
30 coexg xxNVFVxxNFV
31 26 29 30 sylancr φxxNFV
32 eqidd φjZxxN=xxN
33 simpr φjZx=Fjx=Fj
34 33 oveq1d φjZx=FjxN=FjN
35 6 ffvelcdmda φjZFj
36 8 adantr φjZN0
37 35 36 expcld φjZFjN
38 32 34 35 37 fvmptd φjZxxNFj=FjN
39 fvco3 F:ZjZxxNFj=xxNFj
40 6 39 sylan φjZxxNFj=xxNFj
41 nfv kjZ
42 1 41 nfan kφjZ
43 nfcv _kj
44 3 43 nffv _kHj
45 2 43 nffv _kFj
46 nfcv _k^
47 nfcv _kN
48 45 46 47 nfov _kFjN
49 44 48 nfeq kHj=FjN
50 42 49 nfim kφjZHj=FjN
51 eleq1w k=jkZjZ
52 51 anbi2d k=jφkZφjZ
53 fveq2 k=jHk=Hj
54 fveq2 k=jFk=Fj
55 54 oveq1d k=jFkN=FjN
56 53 55 eqeq12d k=jHk=FkNHj=FjN
57 52 56 imbi12d k=jφkZHk=FkNφjZHj=FjN
58 50 57 10 chvarfv φjZHj=FjN
59 38 40 58 3eqtr4rd φjZHj=xxNFj
60 4 9 31 5 59 climeq φHANxxNFAN
61 24 60 mpbird φHAN