Description: The limit of natural powers, is the natural power of the limit. (Contributed by Glauco Siliprandi, 29-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climexp.1 | |
|
climexp.2 | |
||
climexp.3 | |
||
climexp.4 | |
||
climexp.5 | |
||
climexp.6 | |
||
climexp.7 | |
||
climexp.8 | |
||
climexp.9 | |
||
climexp.10 | |
||
Assertion | climexp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climexp.1 | |
|
2 | climexp.2 | |
|
3 | climexp.3 | |
|
4 | climexp.4 | |
|
5 | climexp.5 | |
|
6 | climexp.6 | |
|
7 | climexp.7 | |
|
8 | climexp.8 | |
|
9 | climexp.9 | |
|
10 | climexp.10 | |
|
11 | eqid | |
|
12 | 11 | expcn | |
13 | 8 12 | syl | |
14 | 11 | cncfcn1 | |
15 | 13 14 | eleqtrrdi | |
16 | climcl | |
|
17 | 7 16 | syl | |
18 | 4 5 15 6 7 17 | climcncf | |
19 | eqidd | |
|
20 | simpr | |
|
21 | 20 | oveq1d | |
22 | 17 8 | expcld | |
23 | 19 21 17 22 | fvmptd | |
24 | 18 23 | breqtrd | |
25 | cnex | |
|
26 | 25 | mptex | |
27 | 4 | fvexi | |
28 | fex | |
|
29 | 6 27 28 | sylancl | |
30 | coexg | |
|
31 | 26 29 30 | sylancr | |
32 | eqidd | |
|
33 | simpr | |
|
34 | 33 | oveq1d | |
35 | 6 | ffvelcdmda | |
36 | 8 | adantr | |
37 | 35 36 | expcld | |
38 | 32 34 35 37 | fvmptd | |
39 | fvco3 | |
|
40 | 6 39 | sylan | |
41 | nfv | |
|
42 | 1 41 | nfan | |
43 | nfcv | |
|
44 | 3 43 | nffv | |
45 | 2 43 | nffv | |
46 | nfcv | |
|
47 | nfcv | |
|
48 | 45 46 47 | nfov | |
49 | 44 48 | nfeq | |
50 | 42 49 | nfim | |
51 | eleq1w | |
|
52 | 51 | anbi2d | |
53 | fveq2 | |
|
54 | fveq2 | |
|
55 | 54 | oveq1d | |
56 | 53 55 | eqeq12d | |
57 | 52 56 | imbi12d | |
58 | 50 57 10 | chvarfv | |
59 | 38 40 58 | 3eqtr4rd | |
60 | 4 9 31 5 59 | climeq | |
61 | 24 60 | mpbird | |