Metamath Proof Explorer


Theorem climinf

Description: A bounded monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 29-Jun-2017) (Revised by AV, 15-Sep-2020)

Ref Expression
Hypotheses climinf.3 Z = M
climinf.4 φ M
climinf.5 φ F : Z
climinf.6 φ k Z F k + 1 F k
climinf.7 φ x k Z x F k
Assertion climinf φ F sup ran F <

Proof

Step Hyp Ref Expression
1 climinf.3 Z = M
2 climinf.4 φ M
3 climinf.5 φ F : Z
4 climinf.6 φ k Z F k + 1 F k
5 climinf.7 φ x k Z x F k
6 3 frnd φ ran F
7 3 ffnd φ F Fn Z
8 uzid M M M
9 2 8 syl φ M M
10 9 1 eleqtrrdi φ M Z
11 fnfvelrn F Fn Z M Z F M ran F
12 7 10 11 syl2anc φ F M ran F
13 12 ne0d φ ran F
14 breq2 y = F k x y x F k
15 14 ralrn F Fn Z y ran F x y k Z x F k
16 15 rexbidv F Fn Z x y ran F x y x k Z x F k
17 7 16 syl φ x y ran F x y x k Z x F k
18 5 17 mpbird φ x y ran F x y
19 6 13 18 3jca φ ran F ran F x y ran F x y
20 19 adantr φ y + ran F ran F x y ran F x y
21 infrecl ran F ran F x y ran F x y sup ran F <
22 20 21 syl φ y + sup ran F <
23 simpr φ y + y +
24 22 23 ltaddrpd φ y + sup ran F < < sup ran F < + y
25 rpre y + y
26 25 adantl φ y + y
27 22 26 readdcld φ y + sup ran F < + y
28 infrglb ran F ran F x y ran F x y sup ran F < + y sup ran F < < sup ran F < + y k ran F k < sup ran F < + y
29 20 27 28 syl2anc φ y + sup ran F < < sup ran F < + y k ran F k < sup ran F < + y
30 24 29 mpbid φ y + k ran F k < sup ran F < + y
31 6 sselda φ k ran F k
32 31 adantlr φ y + k ran F k
33 22 adantr φ y + k ran F sup ran F <
34 25 ad2antlr φ y + k ran F y
35 33 34 readdcld φ y + k ran F sup ran F < + y
36 32 35 34 ltsub1d φ y + k ran F k < sup ran F < + y k y < sup ran F < + y - y
37 6 13 18 21 syl3anc φ sup ran F <
38 37 recnd φ sup ran F <
39 38 ad2antrr φ y + k ran F sup ran F <
40 34 recnd φ y + k ran F y
41 39 40 pncand φ y + k ran F sup ran F < + y - y = sup ran F <
42 41 breq2d φ y + k ran F k y < sup ran F < + y - y k y < sup ran F <
43 36 42 bitrd φ y + k ran F k < sup ran F < + y k y < sup ran F <
44 43 biimpd φ y + k ran F k < sup ran F < + y k y < sup ran F <
45 44 reximdva φ y + k ran F k < sup ran F < + y k ran F k y < sup ran F <
46 30 45 mpd φ y + k ran F k y < sup ran F <
47 oveq1 k = F j k y = F j y
48 47 breq1d k = F j k y < sup ran F < F j y < sup ran F <
49 48 rexrn F Fn Z k ran F k y < sup ran F < j Z F j y < sup ran F <
50 7 49 syl φ k ran F k y < sup ran F < j Z F j y < sup ran F <
51 50 biimpa φ k ran F k y < sup ran F < j Z F j y < sup ran F <
52 46 51 syldan φ y + j Z F j y < sup ran F <
53 3 adantr φ y + F : Z
54 1 uztrn2 j Z k j k Z
55 ffvelrn F : Z k Z F k
56 53 54 55 syl2an φ y + j Z k j F k
57 simpl j Z k j j Z
58 ffvelrn F : Z j Z F j
59 53 57 58 syl2an φ y + j Z k j F j
60 37 ad2antrr φ y + j Z k j sup ran F <
61 simprr φ y + j Z k j k j
62 fzssuz j k j
63 uzss j M j M
64 63 1 sseqtrrdi j M j Z
65 64 1 eleq2s j Z j Z
66 65 ad2antrl φ y + j Z k j j Z
67 62 66 sstrid φ y + j Z k j j k Z
68 ffvelrn F : Z n Z F n
69 68 ralrimiva F : Z n Z F n
70 3 69 syl φ n Z F n
71 70 ad2antrr φ y + j Z k j n Z F n
72 ssralv j k Z n Z F n n j k F n
73 67 71 72 sylc φ y + j Z k j n j k F n
74 73 r19.21bi φ y + j Z k j n j k F n
75 fzssuz j k 1 j
76 75 66 sstrid φ y + j Z k j j k 1 Z
77 76 sselda φ y + j Z k j n j k 1 n Z
78 4 ralrimiva φ k Z F k + 1 F k
79 78 ad2antrr φ y + j Z k j k Z F k + 1 F k
80 fvoveq1 k = n F k + 1 = F n + 1
81 fveq2 k = n F k = F n
82 80 81 breq12d k = n F k + 1 F k F n + 1 F n
83 82 rspccva k Z F k + 1 F k n Z F n + 1 F n
84 79 83 sylan φ y + j Z k j n Z F n + 1 F n
85 77 84 syldan φ y + j Z k j n j k 1 F n + 1 F n
86 61 74 85 monoord2 φ y + j Z k j F k F j
87 56 59 60 86 lesub1dd φ y + j Z k j F k sup ran F < F j sup ran F <
88 56 60 resubcld φ y + j Z k j F k sup ran F <
89 59 60 resubcld φ y + j Z k j F j sup ran F <
90 25 ad2antlr φ y + j Z k j y
91 lelttr F k sup ran F < F j sup ran F < y F k sup ran F < F j sup ran F < F j sup ran F < < y F k sup ran F < < y
92 88 89 90 91 syl3anc φ y + j Z k j F k sup ran F < F j sup ran F < F j sup ran F < < y F k sup ran F < < y
93 87 92 mpand φ y + j Z k j F j sup ran F < < y F k sup ran F < < y
94 ltsub23 F j y sup ran F < F j y < sup ran F < F j sup ran F < < y
95 59 90 60 94 syl3anc φ y + j Z k j F j y < sup ran F < F j sup ran F < < y
96 6 ad2antrr φ y + j Z k j ran F
97 7 adantr φ y + F Fn Z
98 fnfvelrn F Fn Z k Z F k ran F
99 97 54 98 syl2an φ y + j Z k j F k ran F
100 96 99 sseldd φ y + j Z k j F k
101 18 ad2antrr φ y + j Z k j x y ran F x y
102 infrelb ran F x y ran F x y F k ran F sup ran F < F k
103 96 101 99 102 syl3anc φ y + j Z k j sup ran F < F k
104 60 100 103 abssubge0d φ y + j Z k j F k sup ran F < = F k sup ran F <
105 104 breq1d φ y + j Z k j F k sup ran F < < y F k sup ran F < < y
106 93 95 105 3imtr4d φ y + j Z k j F j y < sup ran F < F k sup ran F < < y
107 106 anassrs φ y + j Z k j F j y < sup ran F < F k sup ran F < < y
108 107 ralrimdva φ y + j Z F j y < sup ran F < k j F k sup ran F < < y
109 108 reximdva φ y + j Z F j y < sup ran F < j Z k j F k sup ran F < < y
110 52 109 mpd φ y + j Z k j F k sup ran F < < y
111 110 ralrimiva φ y + j Z k j F k sup ran F < < y
112 1 fvexi Z V
113 fex F : Z Z V F V
114 3 112 113 sylancl φ F V
115 eqidd φ k Z F k = F k
116 3 ffvelrnda φ k Z F k
117 116 recnd φ k Z F k
118 1 2 114 115 38 117 clim2c φ F sup ran F < y + j Z k j F k sup ran F < < y
119 111 118 mpbird φ F sup ran F <