Metamath Proof Explorer


Theorem climinf

Description: A bounded monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 29-Jun-2017) (Revised by AV, 15-Sep-2020)

Ref Expression
Hypotheses climinf.3 𝑍 = ( ℤ𝑀 )
climinf.4 ( 𝜑𝑀 ∈ ℤ )
climinf.5 ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
climinf.6 ( ( 𝜑𝑘𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹𝑘 ) )
climinf.7 ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) )
Assertion climinf ( 𝜑𝐹 ⇝ inf ( ran 𝐹 , ℝ , < ) )

Proof

Step Hyp Ref Expression
1 climinf.3 𝑍 = ( ℤ𝑀 )
2 climinf.4 ( 𝜑𝑀 ∈ ℤ )
3 climinf.5 ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
4 climinf.6 ( ( 𝜑𝑘𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹𝑘 ) )
5 climinf.7 ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) )
6 3 frnd ( 𝜑 → ran 𝐹 ⊆ ℝ )
7 3 ffnd ( 𝜑𝐹 Fn 𝑍 )
8 uzid ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ𝑀 ) )
9 2 8 syl ( 𝜑𝑀 ∈ ( ℤ𝑀 ) )
10 9 1 eleqtrrdi ( 𝜑𝑀𝑍 )
11 fnfvelrn ( ( 𝐹 Fn 𝑍𝑀𝑍 ) → ( 𝐹𝑀 ) ∈ ran 𝐹 )
12 7 10 11 syl2anc ( 𝜑 → ( 𝐹𝑀 ) ∈ ran 𝐹 )
13 12 ne0d ( 𝜑 → ran 𝐹 ≠ ∅ )
14 breq2 ( 𝑦 = ( 𝐹𝑘 ) → ( 𝑥𝑦𝑥 ≤ ( 𝐹𝑘 ) ) )
15 14 ralrn ( 𝐹 Fn 𝑍 → ( ∀ 𝑦 ∈ ran 𝐹 𝑥𝑦 ↔ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) ) )
16 15 rexbidv ( 𝐹 Fn 𝑍 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥𝑦 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) ) )
17 7 16 syl ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥𝑦 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) ) )
18 5 17 mpbird ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥𝑦 )
19 6 13 18 3jca ( 𝜑 → ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥𝑦 ) )
20 19 adantr ( ( 𝜑𝑦 ∈ ℝ+ ) → ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥𝑦 ) )
21 infrecl ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥𝑦 ) → inf ( ran 𝐹 , ℝ , < ) ∈ ℝ )
22 20 21 syl ( ( 𝜑𝑦 ∈ ℝ+ ) → inf ( ran 𝐹 , ℝ , < ) ∈ ℝ )
23 simpr ( ( 𝜑𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ )
24 22 23 ltaddrpd ( ( 𝜑𝑦 ∈ ℝ+ ) → inf ( ran 𝐹 , ℝ , < ) < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) )
25 rpre ( 𝑦 ∈ ℝ+𝑦 ∈ ℝ )
26 25 adantl ( ( 𝜑𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ )
27 22 26 readdcld ( ( 𝜑𝑦 ∈ ℝ+ ) → ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ∈ ℝ )
28 infrglb ( ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥𝑦 ) ∧ ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ∈ ℝ ) → ( inf ( ran 𝐹 , ℝ , < ) < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ↔ ∃ 𝑘 ∈ ran 𝐹 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ) )
29 20 27 28 syl2anc ( ( 𝜑𝑦 ∈ ℝ+ ) → ( inf ( ran 𝐹 , ℝ , < ) < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ↔ ∃ 𝑘 ∈ ran 𝐹 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ) )
30 24 29 mpbid ( ( 𝜑𝑦 ∈ ℝ+ ) → ∃ 𝑘 ∈ ran 𝐹 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) )
31 6 sselda ( ( 𝜑𝑘 ∈ ran 𝐹 ) → 𝑘 ∈ ℝ )
32 31 adantlr ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → 𝑘 ∈ ℝ )
33 22 adantr ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → inf ( ran 𝐹 , ℝ , < ) ∈ ℝ )
34 25 ad2antlr ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → 𝑦 ∈ ℝ )
35 33 34 readdcld ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ∈ ℝ )
36 32 35 34 ltsub1d ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → ( 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ↔ ( 𝑘𝑦 ) < ( ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) − 𝑦 ) ) )
37 6 13 18 21 syl3anc ( 𝜑 → inf ( ran 𝐹 , ℝ , < ) ∈ ℝ )
38 37 recnd ( 𝜑 → inf ( ran 𝐹 , ℝ , < ) ∈ ℂ )
39 38 ad2antrr ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → inf ( ran 𝐹 , ℝ , < ) ∈ ℂ )
40 34 recnd ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → 𝑦 ∈ ℂ )
41 39 40 pncand ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → ( ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) − 𝑦 ) = inf ( ran 𝐹 , ℝ , < ) )
42 41 breq2d ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → ( ( 𝑘𝑦 ) < ( ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) − 𝑦 ) ↔ ( 𝑘𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) )
43 36 42 bitrd ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → ( 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ↔ ( 𝑘𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) )
44 43 biimpd ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → ( 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) → ( 𝑘𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) )
45 44 reximdva ( ( 𝜑𝑦 ∈ ℝ+ ) → ( ∃ 𝑘 ∈ ran 𝐹 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) → ∃ 𝑘 ∈ ran 𝐹 ( 𝑘𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) )
46 30 45 mpd ( ( 𝜑𝑦 ∈ ℝ+ ) → ∃ 𝑘 ∈ ran 𝐹 ( 𝑘𝑦 ) < inf ( ran 𝐹 , ℝ , < ) )
47 oveq1 ( 𝑘 = ( 𝐹𝑗 ) → ( 𝑘𝑦 ) = ( ( 𝐹𝑗 ) − 𝑦 ) )
48 47 breq1d ( 𝑘 = ( 𝐹𝑗 ) → ( ( 𝑘𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ↔ ( ( 𝐹𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) )
49 48 rexrn ( 𝐹 Fn 𝑍 → ( ∃ 𝑘 ∈ ran 𝐹 ( 𝑘𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ↔ ∃ 𝑗𝑍 ( ( 𝐹𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) )
50 7 49 syl ( 𝜑 → ( ∃ 𝑘 ∈ ran 𝐹 ( 𝑘𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ↔ ∃ 𝑗𝑍 ( ( 𝐹𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) )
51 50 biimpa ( ( 𝜑 ∧ ∃ 𝑘 ∈ ran 𝐹 ( 𝑘𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) → ∃ 𝑗𝑍 ( ( 𝐹𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) )
52 46 51 syldan ( ( 𝜑𝑦 ∈ ℝ+ ) → ∃ 𝑗𝑍 ( ( 𝐹𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) )
53 3 adantr ( ( 𝜑𝑦 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ ℝ )
54 1 uztrn2 ( ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) → 𝑘𝑍 )
55 ffvelrn ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
56 53 54 55 syl2an ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( 𝐹𝑘 ) ∈ ℝ )
57 simpl ( ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) → 𝑗𝑍 )
58 ffvelrn ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑗𝑍 ) → ( 𝐹𝑗 ) ∈ ℝ )
59 53 57 58 syl2an ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( 𝐹𝑗 ) ∈ ℝ )
60 37 ad2antrr ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → inf ( ran 𝐹 , ℝ , < ) ∈ ℝ )
61 simprr ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → 𝑘 ∈ ( ℤ𝑗 ) )
62 fzssuz ( 𝑗 ... 𝑘 ) ⊆ ( ℤ𝑗 )
63 uzss ( 𝑗 ∈ ( ℤ𝑀 ) → ( ℤ𝑗 ) ⊆ ( ℤ𝑀 ) )
64 63 1 sseqtrrdi ( 𝑗 ∈ ( ℤ𝑀 ) → ( ℤ𝑗 ) ⊆ 𝑍 )
65 64 1 eleq2s ( 𝑗𝑍 → ( ℤ𝑗 ) ⊆ 𝑍 )
66 65 ad2antrl ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ℤ𝑗 ) ⊆ 𝑍 )
67 62 66 sstrid ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( 𝑗 ... 𝑘 ) ⊆ 𝑍 )
68 ffvelrn ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑛𝑍 ) → ( 𝐹𝑛 ) ∈ ℝ )
69 68 ralrimiva ( 𝐹 : 𝑍 ⟶ ℝ → ∀ 𝑛𝑍 ( 𝐹𝑛 ) ∈ ℝ )
70 3 69 syl ( 𝜑 → ∀ 𝑛𝑍 ( 𝐹𝑛 ) ∈ ℝ )
71 70 ad2antrr ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ∀ 𝑛𝑍 ( 𝐹𝑛 ) ∈ ℝ )
72 ssralv ( ( 𝑗 ... 𝑘 ) ⊆ 𝑍 → ( ∀ 𝑛𝑍 ( 𝐹𝑛 ) ∈ ℝ → ∀ 𝑛 ∈ ( 𝑗 ... 𝑘 ) ( 𝐹𝑛 ) ∈ ℝ ) )
73 67 71 72 sylc ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ∀ 𝑛 ∈ ( 𝑗 ... 𝑘 ) ( 𝐹𝑛 ) ∈ ℝ )
74 73 r19.21bi ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) ∧ 𝑛 ∈ ( 𝑗 ... 𝑘 ) ) → ( 𝐹𝑛 ) ∈ ℝ )
75 fzssuz ( 𝑗 ... ( 𝑘 − 1 ) ) ⊆ ( ℤ𝑗 )
76 75 66 sstrid ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( 𝑗 ... ( 𝑘 − 1 ) ) ⊆ 𝑍 )
77 76 sselda ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) ∧ 𝑛 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → 𝑛𝑍 )
78 4 ralrimiva ( 𝜑 → ∀ 𝑘𝑍 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹𝑘 ) )
79 78 ad2antrr ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ∀ 𝑘𝑍 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹𝑘 ) )
80 fvoveq1 ( 𝑘 = 𝑛 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
81 fveq2 ( 𝑘 = 𝑛 → ( 𝐹𝑘 ) = ( 𝐹𝑛 ) )
82 80 81 breq12d ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹𝑘 ) ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹𝑛 ) ) )
83 82 rspccva ( ( ∀ 𝑘𝑍 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹𝑘 ) ∧ 𝑛𝑍 ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹𝑛 ) )
84 79 83 sylan ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) ∧ 𝑛𝑍 ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹𝑛 ) )
85 77 84 syldan ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) ∧ 𝑛 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹𝑛 ) )
86 61 74 85 monoord2 ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( 𝐹𝑘 ) ≤ ( 𝐹𝑗 ) )
87 56 59 60 86 lesub1dd ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ( 𝐹𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ≤ ( ( 𝐹𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) )
88 56 60 resubcld ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ( 𝐹𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ∈ ℝ )
89 59 60 resubcld ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ( 𝐹𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) ∈ ℝ )
90 25 ad2antlr ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → 𝑦 ∈ ℝ )
91 lelttr ( ( ( ( 𝐹𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ∈ ℝ ∧ ( ( 𝐹𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( ( 𝐹𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ≤ ( ( 𝐹𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) ∧ ( ( 𝐹𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) → ( ( 𝐹𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) )
92 88 89 90 91 syl3anc ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ( ( ( 𝐹𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ≤ ( ( 𝐹𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) ∧ ( ( 𝐹𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) → ( ( 𝐹𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) )
93 87 92 mpand ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ( ( 𝐹𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 → ( ( 𝐹𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) )
94 ltsub23 ( ( ( 𝐹𝑗 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ inf ( ran 𝐹 , ℝ , < ) ∈ ℝ ) → ( ( ( 𝐹𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ↔ ( ( 𝐹𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) )
95 59 90 60 94 syl3anc ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ( ( 𝐹𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ↔ ( ( 𝐹𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) )
96 6 ad2antrr ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ran 𝐹 ⊆ ℝ )
97 7 adantr ( ( 𝜑𝑦 ∈ ℝ+ ) → 𝐹 Fn 𝑍 )
98 fnfvelrn ( ( 𝐹 Fn 𝑍𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ran 𝐹 )
99 97 54 98 syl2an ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( 𝐹𝑘 ) ∈ ran 𝐹 )
100 96 99 sseldd ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( 𝐹𝑘 ) ∈ ℝ )
101 18 ad2antrr ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥𝑦 )
102 infrelb ( ( ran 𝐹 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥𝑦 ∧ ( 𝐹𝑘 ) ∈ ran 𝐹 ) → inf ( ran 𝐹 , ℝ , < ) ≤ ( 𝐹𝑘 ) )
103 96 101 99 102 syl3anc ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → inf ( ran 𝐹 , ℝ , < ) ≤ ( 𝐹𝑘 ) )
104 60 100 103 abssubge0d ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( abs ‘ ( ( 𝐹𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) = ( ( 𝐹𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) )
105 104 breq1d ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ( abs ‘ ( ( 𝐹𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ↔ ( ( 𝐹𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) )
106 93 95 105 3imtr4d ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ( ( 𝐹𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) → ( abs ‘ ( ( 𝐹𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) )
107 106 anassrs ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑗𝑍 ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( ( ( 𝐹𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) → ( abs ‘ ( ( 𝐹𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) )
108 107 ralrimdva ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑗𝑍 ) → ( ( ( 𝐹𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) → ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( ( 𝐹𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) )
109 108 reximdva ( ( 𝜑𝑦 ∈ ℝ+ ) → ( ∃ 𝑗𝑍 ( ( 𝐹𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( ( 𝐹𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) )
110 52 109 mpd ( ( 𝜑𝑦 ∈ ℝ+ ) → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( ( 𝐹𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 )
111 110 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( ( 𝐹𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 )
112 1 fvexi 𝑍 ∈ V
113 fex ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑍 ∈ V ) → 𝐹 ∈ V )
114 3 112 113 sylancl ( 𝜑𝐹 ∈ V )
115 eqidd ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = ( 𝐹𝑘 ) )
116 3 ffvelrnda ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
117 116 recnd ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
118 1 2 114 115 38 117 clim2c ( 𝜑 → ( 𝐹 ⇝ inf ( ran 𝐹 , ℝ , < ) ↔ ∀ 𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( ( 𝐹𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) )
119 111 118 mpbird ( 𝜑𝐹 ⇝ inf ( ran 𝐹 , ℝ , < ) )