Metamath Proof Explorer


Theorem ltaddrpd

Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1 ( 𝜑𝐴 ∈ ℝ )
rpgecld.2 ( 𝜑𝐵 ∈ ℝ+ )
Assertion ltaddrpd ( 𝜑𝐴 < ( 𝐴 + 𝐵 ) )

Proof

Step Hyp Ref Expression
1 rpgecld.1 ( 𝜑𝐴 ∈ ℝ )
2 rpgecld.2 ( 𝜑𝐵 ∈ ℝ+ )
3 ltaddrp ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐴 < ( 𝐴 + 𝐵 ) )
4 1 2 3 syl2anc ( 𝜑𝐴 < ( 𝐴 + 𝐵 ) )