Metamath Proof Explorer


Theorem ltaddrpd

Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1
|- ( ph -> A e. RR )
rpgecld.2
|- ( ph -> B e. RR+ )
Assertion ltaddrpd
|- ( ph -> A < ( A + B ) )

Proof

Step Hyp Ref Expression
1 rpgecld.1
 |-  ( ph -> A e. RR )
2 rpgecld.2
 |-  ( ph -> B e. RR+ )
3 ltaddrp
 |-  ( ( A e. RR /\ B e. RR+ ) -> A < ( A + B ) )
4 1 2 3 syl2anc
 |-  ( ph -> A < ( A + B ) )