Database
REAL AND COMPLEX NUMBERS
Integer sets
Upper sets of integers
uzss
Next ⟩
uztric
Metamath Proof Explorer
Ascii
Unicode
Theorem
uzss
Description:
Subset relationship for two sets of upper integers.
(Contributed by
NM
, 5-Sep-2005)
Ref
Expression
Assertion
uzss
⊢
N
∈
ℤ
≥
M
→
ℤ
≥
N
⊆
ℤ
≥
M
Proof
Step
Hyp
Ref
Expression
1
eluzle
⊢
N
∈
ℤ
≥
M
→
M
≤
N
2
1
adantr
⊢
N
∈
ℤ
≥
M
∧
k
∈
ℤ
→
M
≤
N
3
eluzel2
⊢
N
∈
ℤ
≥
M
→
M
∈
ℤ
4
eluzelz
⊢
N
∈
ℤ
≥
M
→
N
∈
ℤ
5
3
4
jca
⊢
N
∈
ℤ
≥
M
→
M
∈
ℤ
∧
N
∈
ℤ
6
zletr
⊢
M
∈
ℤ
∧
N
∈
ℤ
∧
k
∈
ℤ
→
M
≤
N
∧
N
≤
k
→
M
≤
k
7
6
3expa
⊢
M
∈
ℤ
∧
N
∈
ℤ
∧
k
∈
ℤ
→
M
≤
N
∧
N
≤
k
→
M
≤
k
8
5
7
sylan
⊢
N
∈
ℤ
≥
M
∧
k
∈
ℤ
→
M
≤
N
∧
N
≤
k
→
M
≤
k
9
2
8
mpand
⊢
N
∈
ℤ
≥
M
∧
k
∈
ℤ
→
N
≤
k
→
M
≤
k
10
9
imdistanda
⊢
N
∈
ℤ
≥
M
→
k
∈
ℤ
∧
N
≤
k
→
k
∈
ℤ
∧
M
≤
k
11
eluz1
⊢
N
∈
ℤ
→
k
∈
ℤ
≥
N
↔
k
∈
ℤ
∧
N
≤
k
12
4
11
syl
⊢
N
∈
ℤ
≥
M
→
k
∈
ℤ
≥
N
↔
k
∈
ℤ
∧
N
≤
k
13
eluz1
⊢
M
∈
ℤ
→
k
∈
ℤ
≥
M
↔
k
∈
ℤ
∧
M
≤
k
14
3
13
syl
⊢
N
∈
ℤ
≥
M
→
k
∈
ℤ
≥
M
↔
k
∈
ℤ
∧
M
≤
k
15
10
12
14
3imtr4d
⊢
N
∈
ℤ
≥
M
→
k
∈
ℤ
≥
N
→
k
∈
ℤ
≥
M
16
15
ssrdv
⊢
N
∈
ℤ
≥
M
→
ℤ
≥
N
⊆
ℤ
≥
M