Metamath Proof Explorer


Theorem clim2c

Description: Express the predicate F converges to A . (Contributed by NM, 24-Feb-2008) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses clim2.1 Z=M
clim2.2 φM
clim2.3 φFV
clim2.4 φkZFk=B
clim2c.5 φA
clim2c.6 φkZB
Assertion clim2c φFAx+jZkjBA<x

Proof

Step Hyp Ref Expression
1 clim2.1 Z=M
2 clim2.2 φM
3 clim2.3 φFV
4 clim2.4 φkZFk=B
5 clim2c.5 φA
6 clim2c.6 φkZB
7 5 biantrurd φx+jZkjBBA<xAx+jZkjBBA<x
8 1 uztrn2 jZkjkZ
9 6 biantrurd φkZBA<xBBA<x
10 8 9 sylan2 φjZkjBA<xBBA<x
11 10 anassrs φjZkjBA<xBBA<x
12 11 ralbidva φjZkjBA<xkjBBA<x
13 12 rexbidva φjZkjBA<xjZkjBBA<x
14 13 ralbidv φx+jZkjBA<xx+jZkjBBA<x
15 1 2 3 4 clim2 φFAAx+jZkjBBA<x
16 7 14 15 3bitr4rd φFAx+jZkjBA<x