Metamath Proof Explorer


Theorem clim0

Description: Express the predicate F converges to 0 . (Contributed by NM, 24-Feb-2008) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses clim0.1 Z=M
clim0.2 φM
clim0.3 φFV
clim0.4 φkZFk=B
Assertion clim0 φF0x+jZkjBB<x

Proof

Step Hyp Ref Expression
1 clim0.1 Z=M
2 clim0.2 φM
3 clim0.3 φFV
4 clim0.4 φkZFk=B
5 1 2 3 4 clim2 φF00x+jZkjBB0<x
6 0cn 0
7 6 biantrur x+jZkjBB0<x0x+jZkjBB0<x
8 subid1 BB0=B
9 8 fveq2d BB0=B
10 9 breq1d BB0<xB<x
11 10 pm5.32i BB0<xBB<x
12 11 ralbii kjBB0<xkjBB<x
13 12 rexbii jZkjBB0<xjZkjBB<x
14 13 ralbii x+jZkjBB0<xx+jZkjBB<x
15 7 14 bitr3i 0x+jZkjBB0<xx+jZkjBB<x
16 5 15 bitrdi φF0x+jZkjBB<x