| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clim0.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | clim0.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | clim0.3 | ⊢ ( 𝜑  →  𝐹  ∈  𝑉 ) | 
						
							| 4 |  | clim0.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 5 | 1 2 3 4 | clim2 | ⊢ ( 𝜑  →  ( 𝐹  ⇝  0  ↔  ( 0  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  0 ) )  <  𝑥 ) ) ) ) | 
						
							| 6 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 7 | 6 | biantrur | ⊢ ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  0 ) )  <  𝑥 )  ↔  ( 0  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  0 ) )  <  𝑥 ) ) ) | 
						
							| 8 |  | subid1 | ⊢ ( 𝐵  ∈  ℂ  →  ( 𝐵  −  0 )  =  𝐵 ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( 𝐵  ∈  ℂ  →  ( abs ‘ ( 𝐵  −  0 ) )  =  ( abs ‘ 𝐵 ) ) | 
						
							| 10 | 9 | breq1d | ⊢ ( 𝐵  ∈  ℂ  →  ( ( abs ‘ ( 𝐵  −  0 ) )  <  𝑥  ↔  ( abs ‘ 𝐵 )  <  𝑥 ) ) | 
						
							| 11 | 10 | pm5.32i | ⊢ ( ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  0 ) )  <  𝑥 )  ↔  ( 𝐵  ∈  ℂ  ∧  ( abs ‘ 𝐵 )  <  𝑥 ) ) | 
						
							| 12 | 11 | ralbii | ⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  0 ) )  <  𝑥 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ 𝐵 )  <  𝑥 ) ) | 
						
							| 13 | 12 | rexbii | ⊢ ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  0 ) )  <  𝑥 )  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ 𝐵 )  <  𝑥 ) ) | 
						
							| 14 | 13 | ralbii | ⊢ ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  0 ) )  <  𝑥 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ 𝐵 )  <  𝑥 ) ) | 
						
							| 15 | 7 14 | bitr3i | ⊢ ( ( 0  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  0 ) )  <  𝑥 ) )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ 𝐵 )  <  𝑥 ) ) | 
						
							| 16 | 5 15 | bitrdi | ⊢ ( 𝜑  →  ( 𝐹  ⇝  0  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ 𝐵 )  <  𝑥 ) ) ) |