Metamath Proof Explorer


Theorem clim0c

Description: Express the predicate F converges to 0 . (Contributed by NM, 24-Feb-2008) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses clim0.1 𝑍 = ( ℤ𝑀 )
clim0.2 ( 𝜑𝑀 ∈ ℤ )
clim0.3 ( 𝜑𝐹𝑉 )
clim0.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
clim0c.6 ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
Assertion clim0c ( 𝜑 → ( 𝐹 ⇝ 0 ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ 𝐵 ) < 𝑥 ) )

Proof

Step Hyp Ref Expression
1 clim0.1 𝑍 = ( ℤ𝑀 )
2 clim0.2 ( 𝜑𝑀 ∈ ℤ )
3 clim0.3 ( 𝜑𝐹𝑉 )
4 clim0.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
5 clim0c.6 ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
6 0cnd ( 𝜑 → 0 ∈ ℂ )
7 1 2 3 4 6 5 clim2c ( 𝜑 → ( 𝐹 ⇝ 0 ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ) )
8 1 uztrn2 ( ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) → 𝑘𝑍 )
9 5 subid1d ( ( 𝜑𝑘𝑍 ) → ( 𝐵 − 0 ) = 𝐵 )
10 9 fveq2d ( ( 𝜑𝑘𝑍 ) → ( abs ‘ ( 𝐵 − 0 ) ) = ( abs ‘ 𝐵 ) )
11 10 breq1d ( ( 𝜑𝑘𝑍 ) → ( ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ( abs ‘ 𝐵 ) < 𝑥 ) )
12 8 11 sylan2 ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ( abs ‘ 𝐵 ) < 𝑥 ) )
13 12 anassrs ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ( abs ‘ 𝐵 ) < 𝑥 ) )
14 13 ralbidva ( ( 𝜑𝑗𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ 𝐵 ) < 𝑥 ) )
15 14 rexbidva ( 𝜑 → ( ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ 𝐵 ) < 𝑥 ) )
16 15 ralbidv ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ 𝐵 ) < 𝑥 ) )
17 7 16 bitrd ( 𝜑 → ( 𝐹 ⇝ 0 ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ 𝐵 ) < 𝑥 ) )