Metamath Proof Explorer


Theorem monoord2

Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014)

Ref Expression
Hypotheses monoord2.1 φ N M
monoord2.2 φ k M N F k
monoord2.3 φ k M N 1 F k + 1 F k
Assertion monoord2 φ F N F M

Proof

Step Hyp Ref Expression
1 monoord2.1 φ N M
2 monoord2.2 φ k M N F k
3 monoord2.3 φ k M N 1 F k + 1 F k
4 2 renegcld φ k M N F k
5 4 fmpttd φ k M N F k : M N
6 5 ffvelrnda φ n M N k M N F k n
7 3 ralrimiva φ k M N 1 F k + 1 F k
8 fvoveq1 k = n F k + 1 = F n + 1
9 fveq2 k = n F k = F n
10 8 9 breq12d k = n F k + 1 F k F n + 1 F n
11 10 cbvralvw k M N 1 F k + 1 F k n M N 1 F n + 1 F n
12 7 11 sylib φ n M N 1 F n + 1 F n
13 12 r19.21bi φ n M N 1 F n + 1 F n
14 fveq2 k = n + 1 F k = F n + 1
15 14 eleq1d k = n + 1 F k F n + 1
16 2 ralrimiva φ k M N F k
17 16 adantr φ n M N 1 k M N F k
18 fzp1elp1 n M N 1 n + 1 M N - 1 + 1
19 18 adantl φ n M N 1 n + 1 M N - 1 + 1
20 eluzelz N M N
21 1 20 syl φ N
22 21 zcnd φ N
23 ax-1cn 1
24 npcan N 1 N - 1 + 1 = N
25 22 23 24 sylancl φ N - 1 + 1 = N
26 25 oveq2d φ M N - 1 + 1 = M N
27 26 adantr φ n M N 1 M N - 1 + 1 = M N
28 19 27 eleqtrd φ n M N 1 n + 1 M N
29 15 17 28 rspcdva φ n M N 1 F n + 1
30 9 eleq1d k = n F k F n
31 fzssp1 M N 1 M N - 1 + 1
32 31 26 sseqtrid φ M N 1 M N
33 32 sselda φ n M N 1 n M N
34 30 17 33 rspcdva φ n M N 1 F n
35 29 34 lenegd φ n M N 1 F n + 1 F n F n F n + 1
36 13 35 mpbid φ n M N 1 F n F n + 1
37 9 negeqd k = n F k = F n
38 eqid k M N F k = k M N F k
39 negex F n V
40 37 38 39 fvmpt n M N k M N F k n = F n
41 33 40 syl φ n M N 1 k M N F k n = F n
42 14 negeqd k = n + 1 F k = F n + 1
43 negex F n + 1 V
44 42 38 43 fvmpt n + 1 M N k M N F k n + 1 = F n + 1
45 28 44 syl φ n M N 1 k M N F k n + 1 = F n + 1
46 36 41 45 3brtr4d φ n M N 1 k M N F k n k M N F k n + 1
47 1 6 46 monoord φ k M N F k M k M N F k N
48 eluzfz1 N M M M N
49 1 48 syl φ M M N
50 fveq2 k = M F k = F M
51 50 negeqd k = M F k = F M
52 negex F M V
53 51 38 52 fvmpt M M N k M N F k M = F M
54 49 53 syl φ k M N F k M = F M
55 eluzfz2 N M N M N
56 1 55 syl φ N M N
57 fveq2 k = N F k = F N
58 57 negeqd k = N F k = F N
59 negex F N V
60 58 38 59 fvmpt N M N k M N F k N = F N
61 56 60 syl φ k M N F k N = F N
62 47 54 61 3brtr3d φ F M F N
63 57 eleq1d k = N F k F N
64 63 16 56 rspcdva φ F N
65 50 eleq1d k = M F k F M
66 65 16 49 rspcdva φ F M
67 64 66 lenegd φ F N F M F M F N
68 62 67 mpbird φ F N F M