Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005) (Revised by Mario Carneiro, 9-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | monoord.1 | |
|
monoord.2 | |
||
monoord.3 | |
||
Assertion | monoord | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | monoord.1 | |
|
2 | monoord.2 | |
|
3 | monoord.3 | |
|
4 | eluzfz2 | |
|
5 | 1 4 | syl | |
6 | eleq1 | |
|
7 | fveq2 | |
|
8 | 7 | breq2d | |
9 | 6 8 | imbi12d | |
10 | 9 | imbi2d | |
11 | eleq1 | |
|
12 | fveq2 | |
|
13 | 12 | breq2d | |
14 | 11 13 | imbi12d | |
15 | 14 | imbi2d | |
16 | eleq1 | |
|
17 | fveq2 | |
|
18 | 17 | breq2d | |
19 | 16 18 | imbi12d | |
20 | 19 | imbi2d | |
21 | eleq1 | |
|
22 | fveq2 | |
|
23 | 22 | breq2d | |
24 | 21 23 | imbi12d | |
25 | 24 | imbi2d | |
26 | fveq2 | |
|
27 | 26 | eleq1d | |
28 | 2 | ralrimiva | |
29 | eluzfz1 | |
|
30 | 1 29 | syl | |
31 | 27 28 30 | rspcdva | |
32 | 31 | leidd | |
33 | 32 | a1d | |
34 | peano2fzr | |
|
35 | 34 | adantl | |
36 | 35 | expr | |
37 | 36 | imim1d | |
38 | fveq2 | |
|
39 | fvoveq1 | |
|
40 | 38 39 | breq12d | |
41 | 3 | ralrimiva | |
42 | 41 | adantr | |
43 | simprl | |
|
44 | eluzelz | |
|
45 | 43 44 | syl | |
46 | simprr | |
|
47 | elfzuz3 | |
|
48 | 46 47 | syl | |
49 | eluzp1m1 | |
|
50 | 45 48 49 | syl2anc | |
51 | elfzuzb | |
|
52 | 43 50 51 | sylanbrc | |
53 | 40 42 52 | rspcdva | |
54 | 31 | adantr | |
55 | 38 | eleq1d | |
56 | 28 | adantr | |
57 | 55 56 35 | rspcdva | |
58 | fveq2 | |
|
59 | 58 | eleq1d | |
60 | 59 56 46 | rspcdva | |
61 | letr | |
|
62 | 54 57 60 61 | syl3anc | |
63 | 53 62 | mpan2d | |
64 | 37 63 | animpimp2impd | |
65 | 10 15 20 25 33 64 | uzind4i | |
66 | 1 65 | mpcom | |
67 | 5 66 | mpd | |