Metamath Proof Explorer


Theorem monoord

Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005) (Revised by Mario Carneiro, 9-Feb-2014)

Ref Expression
Hypotheses monoord.1 φNM
monoord.2 φkMNFk
monoord.3 φkMN1FkFk+1
Assertion monoord φFMFN

Proof

Step Hyp Ref Expression
1 monoord.1 φNM
2 monoord.2 φkMNFk
3 monoord.3 φkMN1FkFk+1
4 eluzfz2 NMNMN
5 1 4 syl φNMN
6 eleq1 x=MxMNMMN
7 fveq2 x=MFx=FM
8 7 breq2d x=MFMFxFMFM
9 6 8 imbi12d x=MxMNFMFxMMNFMFM
10 9 imbi2d x=MφxMNFMFxφMMNFMFM
11 eleq1 x=nxMNnMN
12 fveq2 x=nFx=Fn
13 12 breq2d x=nFMFxFMFn
14 11 13 imbi12d x=nxMNFMFxnMNFMFn
15 14 imbi2d x=nφxMNFMFxφnMNFMFn
16 eleq1 x=n+1xMNn+1MN
17 fveq2 x=n+1Fx=Fn+1
18 17 breq2d x=n+1FMFxFMFn+1
19 16 18 imbi12d x=n+1xMNFMFxn+1MNFMFn+1
20 19 imbi2d x=n+1φxMNFMFxφn+1MNFMFn+1
21 eleq1 x=NxMNNMN
22 fveq2 x=NFx=FN
23 22 breq2d x=NFMFxFMFN
24 21 23 imbi12d x=NxMNFMFxNMNFMFN
25 24 imbi2d x=NφxMNFMFxφNMNFMFN
26 fveq2 k=MFk=FM
27 26 eleq1d k=MFkFM
28 2 ralrimiva φkMNFk
29 eluzfz1 NMMMN
30 1 29 syl φMMN
31 27 28 30 rspcdva φFM
32 31 leidd φFMFM
33 32 a1d φMMNFMFM
34 peano2fzr nMn+1MNnMN
35 34 adantl φnMn+1MNnMN
36 35 expr φnMn+1MNnMN
37 36 imim1d φnMnMNFMFnn+1MNFMFn
38 fveq2 k=nFk=Fn
39 fvoveq1 k=nFk+1=Fn+1
40 38 39 breq12d k=nFkFk+1FnFn+1
41 3 ralrimiva φkMN1FkFk+1
42 41 adantr φnMn+1MNkMN1FkFk+1
43 simprl φnMn+1MNnM
44 eluzelz nMn
45 43 44 syl φnMn+1MNn
46 simprr φnMn+1MNn+1MN
47 elfzuz3 n+1MNNn+1
48 46 47 syl φnMn+1MNNn+1
49 eluzp1m1 nNn+1N1n
50 45 48 49 syl2anc φnMn+1MNN1n
51 elfzuzb nMN1nMN1n
52 43 50 51 sylanbrc φnMn+1MNnMN1
53 40 42 52 rspcdva φnMn+1MNFnFn+1
54 31 adantr φnMn+1MNFM
55 38 eleq1d k=nFkFn
56 28 adantr φnMn+1MNkMNFk
57 55 56 35 rspcdva φnMn+1MNFn
58 fveq2 k=n+1Fk=Fn+1
59 58 eleq1d k=n+1FkFn+1
60 59 56 46 rspcdva φnMn+1MNFn+1
61 letr FMFnFn+1FMFnFnFn+1FMFn+1
62 54 57 60 61 syl3anc φnMn+1MNFMFnFnFn+1FMFn+1
63 53 62 mpan2d φnMn+1MNFMFnFMFn+1
64 37 63 animpimp2impd nMφnMNFMFnφn+1MNFMFn+1
65 10 15 20 25 33 64 uzind4i NMφNMNFMFN
66 1 65 mpcom φNMNFMFN
67 5 66 mpd φFMFN