Metamath Proof Explorer


Definition df-cncf

Description: Define the operation whose value is a class of continuous complex functions. (Contributed by Paul Chapman, 11-Oct-2007)

Ref Expression
Assertion df-cncf cn=a𝒫,b𝒫fba|xae+d+yaxy<dfxfy<e

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccncf classcn
1 va setvara
2 cc class
3 2 cpw class𝒫
4 vb setvarb
5 vf setvarf
6 4 cv setvarb
7 cmap class𝑚
8 1 cv setvara
9 6 8 7 co classba
10 vx setvarx
11 ve setvare
12 crp class+
13 vd setvard
14 vy setvary
15 cabs classabs
16 10 cv setvarx
17 cmin class
18 14 cv setvary
19 16 18 17 co classxy
20 19 15 cfv classxy
21 clt class<
22 13 cv setvard
23 20 22 21 wbr wffxy<d
24 5 cv setvarf
25 16 24 cfv classfx
26 18 24 cfv classfy
27 25 26 17 co classfxfy
28 27 15 cfv classfxfy
29 11 cv setvare
30 28 29 21 wbr wfffxfy<e
31 23 30 wi wffxy<dfxfy<e
32 31 14 8 wral wffyaxy<dfxfy<e
33 32 13 12 wrex wffd+yaxy<dfxfy<e
34 33 11 12 wral wffe+d+yaxy<dfxfy<e
35 34 10 8 wral wffxae+d+yaxy<dfxfy<e
36 35 5 9 crab classfba|xae+d+yaxy<dfxfy<e
37 1 4 3 3 36 cmpo classa𝒫,b𝒫fba|xae+d+yaxy<dfxfy<e
38 0 37 wceq wffcn=a𝒫,b𝒫fba|xae+d+yaxy<dfxfy<e