Metamath Proof Explorer


Theorem iitopon

Description: The unit interval is a topological space. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion iitopon IITopOn01

Proof

Step Hyp Ref Expression
1 cnxmet abs∞Met
2 unitssre 01
3 ax-resscn
4 2 3 sstri 01
5 xmetres2 abs∞Met01abs01×01∞Met01
6 1 4 5 mp2an abs01×01∞Met01
7 df-ii II=MetOpenabs01×01
8 7 mopntopon abs01×01∞Met01IITopOn01
9 6 8 ax-mp IITopOn01