Metamath Proof Explorer


Theorem climcncf

Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Hypotheses climcncf.1 𝑍 = ( ℤ𝑀 )
climcncf.2 ( 𝜑𝑀 ∈ ℤ )
climcncf.4 ( 𝜑𝐹 ∈ ( 𝐴cn𝐵 ) )
climcncf.5 ( 𝜑𝐺 : 𝑍𝐴 )
climcncf.6 ( 𝜑𝐺𝐷 )
climcncf.7 ( 𝜑𝐷𝐴 )
Assertion climcncf ( 𝜑 → ( 𝐹𝐺 ) ⇝ ( 𝐹𝐷 ) )

Proof

Step Hyp Ref Expression
1 climcncf.1 𝑍 = ( ℤ𝑀 )
2 climcncf.2 ( 𝜑𝑀 ∈ ℤ )
3 climcncf.4 ( 𝜑𝐹 ∈ ( 𝐴cn𝐵 ) )
4 climcncf.5 ( 𝜑𝐺 : 𝑍𝐴 )
5 climcncf.6 ( 𝜑𝐺𝐷 )
6 climcncf.7 ( 𝜑𝐷𝐴 )
7 cncff ( 𝐹 ∈ ( 𝐴cn𝐵 ) → 𝐹 : 𝐴𝐵 )
8 3 7 syl ( 𝜑𝐹 : 𝐴𝐵 )
9 8 ffvelrnda ( ( 𝜑𝑧𝐴 ) → ( 𝐹𝑧 ) ∈ 𝐵 )
10 cncfrss2 ( 𝐹 ∈ ( 𝐴cn𝐵 ) → 𝐵 ⊆ ℂ )
11 3 10 syl ( 𝜑𝐵 ⊆ ℂ )
12 11 sselda ( ( 𝜑 ∧ ( 𝐹𝑧 ) ∈ 𝐵 ) → ( 𝐹𝑧 ) ∈ ℂ )
13 9 12 syldan ( ( 𝜑𝑧𝐴 ) → ( 𝐹𝑧 ) ∈ ℂ )
14 1 fvexi 𝑍 ∈ V
15 fex ( ( 𝐺 : 𝑍𝐴𝑍 ∈ V ) → 𝐺 ∈ V )
16 4 14 15 sylancl ( 𝜑𝐺 ∈ V )
17 coexg ( ( 𝐹 ∈ ( 𝐴cn𝐵 ) ∧ 𝐺 ∈ V ) → ( 𝐹𝐺 ) ∈ V )
18 3 16 17 syl2anc ( 𝜑 → ( 𝐹𝐺 ) ∈ V )
19 cncfi ( ( 𝐹 ∈ ( 𝐴cn𝐵 ) ∧ 𝐷𝐴𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+𝑧𝐴 ( ( abs ‘ ( 𝑧𝐷 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹𝑧 ) − ( 𝐹𝐷 ) ) ) < 𝑥 ) )
20 19 3expia ( ( 𝐹 ∈ ( 𝐴cn𝐵 ) ∧ 𝐷𝐴 ) → ( 𝑥 ∈ ℝ+ → ∃ 𝑦 ∈ ℝ+𝑧𝐴 ( ( abs ‘ ( 𝑧𝐷 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹𝑧 ) − ( 𝐹𝐷 ) ) ) < 𝑥 ) ) )
21 3 6 20 syl2anc ( 𝜑 → ( 𝑥 ∈ ℝ+ → ∃ 𝑦 ∈ ℝ+𝑧𝐴 ( ( abs ‘ ( 𝑧𝐷 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹𝑧 ) − ( 𝐹𝐷 ) ) ) < 𝑥 ) ) )
22 21 imp ( ( 𝜑𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+𝑧𝐴 ( ( abs ‘ ( 𝑧𝐷 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹𝑧 ) − ( 𝐹𝐷 ) ) ) < 𝑥 ) )
23 4 ffvelrnda ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) ∈ 𝐴 )
24 fvco3 ( ( 𝐺 : 𝑍𝐴𝑘𝑍 ) → ( ( 𝐹𝐺 ) ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺𝑘 ) ) )
25 4 24 sylan ( ( 𝜑𝑘𝑍 ) → ( ( 𝐹𝐺 ) ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺𝑘 ) ) )
26 1 2 6 13 5 18 22 23 25 climcn1 ( 𝜑 → ( 𝐹𝐺 ) ⇝ ( 𝐹𝐷 ) )