Metamath Proof Explorer


Theorem cncff

Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008) (Revised by Mario Carneiro, 25-Aug-2014)

Ref Expression
Assertion cncff ( 𝐹 ∈ ( 𝐴cn𝐵 ) → 𝐹 : 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 cncfrss ( 𝐹 ∈ ( 𝐴cn𝐵 ) → 𝐴 ⊆ ℂ )
2 cncfrss2 ( 𝐹 ∈ ( 𝐴cn𝐵 ) → 𝐵 ⊆ ℂ )
3 elcncf ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐴cn𝐵 ) ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑤 ) ) ) < 𝑦 ) ) ) )
4 1 2 3 syl2anc ( 𝐹 ∈ ( 𝐴cn𝐵 ) → ( 𝐹 ∈ ( 𝐴cn𝐵 ) ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑤 ) ) ) < 𝑦 ) ) ) )
5 4 ibi ( 𝐹 ∈ ( 𝐴cn𝐵 ) → ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑤 ) ) ) < 𝑦 ) ) )
6 5 simpld ( 𝐹 ∈ ( 𝐴cn𝐵 ) → 𝐹 : 𝐴𝐵 )