Metamath Proof Explorer


Theorem elcncf

Description: Membership in the set of continuous complex functions from A to B . (Contributed by Paul Chapman, 11-Oct-2007) (Revised by Mario Carneiro, 9-Nov-2013)

Ref Expression
Assertion elcncf ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐴cn𝐵 ) ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑤 ) ) ) < 𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 cncfval ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐴cn𝐵 ) = { 𝑓 ∈ ( 𝐵m 𝐴 ) ∣ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) } )
2 1 eleq2d ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐴cn𝐵 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝐵m 𝐴 ) ∣ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) } ) )
3 fveq1 ( 𝑓 = 𝐹 → ( 𝑓𝑥 ) = ( 𝐹𝑥 ) )
4 fveq1 ( 𝑓 = 𝐹 → ( 𝑓𝑤 ) = ( 𝐹𝑤 ) )
5 3 4 oveq12d ( 𝑓 = 𝐹 → ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) = ( ( 𝐹𝑥 ) − ( 𝐹𝑤 ) ) )
6 5 fveq2d ( 𝑓 = 𝐹 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) = ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑤 ) ) ) )
7 6 breq1d ( 𝑓 = 𝐹 → ( ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑤 ) ) ) < 𝑦 ) )
8 7 imbi2d ( 𝑓 = 𝐹 → ( ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) ↔ ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑤 ) ) ) < 𝑦 ) ) )
9 8 rexralbidv ( 𝑓 = 𝐹 → ( ∃ 𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑤 ) ) ) < 𝑦 ) ) )
10 9 2ralbidv ( 𝑓 = 𝐹 → ( ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) ↔ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑤 ) ) ) < 𝑦 ) ) )
11 10 elrab ( 𝐹 ∈ { 𝑓 ∈ ( 𝐵m 𝐴 ) ∣ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) } ↔ ( 𝐹 ∈ ( 𝐵m 𝐴 ) ∧ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑤 ) ) ) < 𝑦 ) ) )
12 2 11 bitrdi ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐴cn𝐵 ) ↔ ( 𝐹 ∈ ( 𝐵m 𝐴 ) ∧ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑤 ) ) ) < 𝑦 ) ) ) )
13 cnex ℂ ∈ V
14 13 ssex ( 𝐵 ⊆ ℂ → 𝐵 ∈ V )
15 13 ssex ( 𝐴 ⊆ ℂ → 𝐴 ∈ V )
16 elmapg ( ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐹 ∈ ( 𝐵m 𝐴 ) ↔ 𝐹 : 𝐴𝐵 ) )
17 14 15 16 syl2anr ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐵m 𝐴 ) ↔ 𝐹 : 𝐴𝐵 ) )
18 17 anbi1d ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( ( 𝐹 ∈ ( 𝐵m 𝐴 ) ∧ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑤 ) ) ) < 𝑦 ) ) ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑤 ) ) ) < 𝑦 ) ) ) )
19 12 18 bitrd ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐴cn𝐵 ) ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑤 ) ) ) < 𝑦 ) ) ) )