| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnex |
⊢ ℂ ∈ V |
| 2 |
1
|
elpw2 |
⊢ ( 𝐴 ∈ 𝒫 ℂ ↔ 𝐴 ⊆ ℂ ) |
| 3 |
1
|
elpw2 |
⊢ ( 𝐵 ∈ 𝒫 ℂ ↔ 𝐵 ⊆ ℂ ) |
| 4 |
|
oveq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑏 ↑m 𝑎 ) = ( 𝑏 ↑m 𝐴 ) ) |
| 5 |
|
raleq |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑤 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ↔ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 6 |
5
|
rexbidv |
⊢ ( 𝑎 = 𝐴 → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 7 |
6
|
ralbidv |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 8 |
7
|
raleqbi1dv |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 9 |
4 8
|
rabeqbidv |
⊢ ( 𝑎 = 𝐴 → { 𝑓 ∈ ( 𝑏 ↑m 𝑎 ) ∣ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) } = { 𝑓 ∈ ( 𝑏 ↑m 𝐴 ) ∣ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) } ) |
| 10 |
|
oveq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ↑m 𝐴 ) = ( 𝐵 ↑m 𝐴 ) ) |
| 11 |
10
|
rabeqdv |
⊢ ( 𝑏 = 𝐵 → { 𝑓 ∈ ( 𝑏 ↑m 𝐴 ) ∣ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) } = { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) } ) |
| 12 |
|
df-cncf |
⊢ –cn→ = ( 𝑎 ∈ 𝒫 ℂ , 𝑏 ∈ 𝒫 ℂ ↦ { 𝑓 ∈ ( 𝑏 ↑m 𝑎 ) ∣ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) } ) |
| 13 |
|
ovex |
⊢ ( 𝐵 ↑m 𝐴 ) ∈ V |
| 14 |
13
|
rabex |
⊢ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) } ∈ V |
| 15 |
9 11 12 14
|
ovmpo |
⊢ ( ( 𝐴 ∈ 𝒫 ℂ ∧ 𝐵 ∈ 𝒫 ℂ ) → ( 𝐴 –cn→ 𝐵 ) = { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) } ) |
| 16 |
2 3 15
|
syl2anbr |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐴 –cn→ 𝐵 ) = { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) } ) |