Description: Equality theorem for an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itgeq1d.aeqb | |- ( ph -> A = B ) |
|
| Assertion | itgeq1d | |- ( ph -> S. A C _d x = S. B C _d x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgeq1d.aeqb | |- ( ph -> A = B ) |
|
| 2 | itgeq1 | |- ( A = B -> S. A C _d x = S. B C _d x ) |
|
| 3 | 1 2 | syl | |- ( ph -> S. A C _d x = S. B C _d x ) |