Metamath Proof Explorer


Theorem iuneq12i

Description: Equality theorem for indexed union. Inference version. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses iuneq12i.1
|- A = B
iuneq12i.2
|- C = D
Assertion iuneq12i
|- U_ x e. A C = U_ x e. B D

Proof

Step Hyp Ref Expression
1 iuneq12i.1
 |-  A = B
2 iuneq12i.2
 |-  C = D
3 2 eleq2i
 |-  ( t e. C <-> t e. D )
4 1 3 rexeqbii
 |-  ( E. x e. A t e. C <-> E. x e. B t e. D )
5 4 abbii
 |-  { t | E. x e. A t e. C } = { t | E. x e. B t e. D }
6 df-iun
 |-  U_ x e. A C = { t | E. x e. A t e. C }
7 df-iun
 |-  U_ x e. B D = { t | E. x e. B t e. D }
8 5 6 7 3eqtr4i
 |-  U_ x e. A C = U_ x e. B D