Metamath Proof Explorer


Theorem iuneq12i

Description: Equality theorem for indexed union. Inference version. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses iuneq12i.1 𝐴 = 𝐵
iuneq12i.2 𝐶 = 𝐷
Assertion iuneq12i 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷

Proof

Step Hyp Ref Expression
1 iuneq12i.1 𝐴 = 𝐵
2 iuneq12i.2 𝐶 = 𝐷
3 2 eleq2i ( 𝑡𝐶𝑡𝐷 )
4 1 3 rexeqbii ( ∃ 𝑥𝐴 𝑡𝐶 ↔ ∃ 𝑥𝐵 𝑡𝐷 )
5 4 abbii { 𝑡 ∣ ∃ 𝑥𝐴 𝑡𝐶 } = { 𝑡 ∣ ∃ 𝑥𝐵 𝑡𝐷 }
6 df-iun 𝑥𝐴 𝐶 = { 𝑡 ∣ ∃ 𝑥𝐴 𝑡𝐶 }
7 df-iun 𝑥𝐵 𝐷 = { 𝑡 ∣ ∃ 𝑥𝐵 𝑡𝐷 }
8 5 6 7 3eqtr4i 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷