Description: Equality theorem for indexed union. Inference version. (Contributed by GG, 1-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iuneq12i.1 | ⊢ 𝐴 = 𝐵 | |
| iuneq12i.2 | ⊢ 𝐶 = 𝐷 | ||
| Assertion | iuneq12i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq12i.1 | ⊢ 𝐴 = 𝐵 | |
| 2 | iuneq12i.2 | ⊢ 𝐶 = 𝐷 | |
| 3 | 2 | eleq2i | ⊢ ( 𝑡 ∈ 𝐶 ↔ 𝑡 ∈ 𝐷 ) |
| 4 | 1 3 | rexeqbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝑡 ∈ 𝐷 ) |
| 5 | 4 | abbii | ⊢ { 𝑡 ∣ ∃ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 } = { 𝑡 ∣ ∃ 𝑥 ∈ 𝐵 𝑡 ∈ 𝐷 } |
| 6 | df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = { 𝑡 ∣ ∃ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 } | |
| 7 | df-iun | ⊢ ∪ 𝑥 ∈ 𝐵 𝐷 = { 𝑡 ∣ ∃ 𝑥 ∈ 𝐵 𝑡 ∈ 𝐷 } | |
| 8 | 5 6 7 | 3eqtr4i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷 |