Metamath Proof Explorer


Theorem iineq1i

Description: Equality theorem for indexed intersection. Inference version. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis iineq1i.1 𝐴 = 𝐵
Assertion iineq1i 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶

Proof

Step Hyp Ref Expression
1 iineq1i.1 𝐴 = 𝐵
2 1 eleq2i ( 𝑥𝐴𝑥𝐵 )
3 2 imbi1i ( ( 𝑥𝐴𝑡𝐶 ) ↔ ( 𝑥𝐵𝑡𝐶 ) )
4 3 ralbii2 ( ∀ 𝑥𝐴 𝑡𝐶 ↔ ∀ 𝑥𝐵 𝑡𝐶 )
5 4 abbii { 𝑡 ∣ ∀ 𝑥𝐴 𝑡𝐶 } = { 𝑡 ∣ ∀ 𝑥𝐵 𝑡𝐶 }
6 df-iin 𝑥𝐴 𝐶 = { 𝑡 ∣ ∀ 𝑥𝐴 𝑡𝐶 }
7 df-iin 𝑥𝐵 𝐶 = { 𝑡 ∣ ∀ 𝑥𝐵 𝑡𝐶 }
8 5 6 7 3eqtr4i 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶