Description: Equality theorem for indexed intersection. Inference version. General version of iineq1i . (Contributed by GG, 1-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iineq12i.1 | ⊢ 𝐴 = 𝐵 | |
| iineq12i.2 | ⊢ 𝐶 = 𝐷 | ||
| Assertion | iineq12i | ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iineq12i.1 | ⊢ 𝐴 = 𝐵 | |
| 2 | iineq12i.2 | ⊢ 𝐶 = 𝐷 | |
| 3 | 2 | eleq2i | ⊢ ( 𝑡 ∈ 𝐶 ↔ 𝑡 ∈ 𝐷 ) |
| 4 | 1 3 | raleqbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 𝑡 ∈ 𝐷 ) |
| 5 | 4 | abbii | ⊢ { 𝑡 ∣ ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 } = { 𝑡 ∣ ∀ 𝑥 ∈ 𝐵 𝑡 ∈ 𝐷 } |
| 6 | df-iin | ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = { 𝑡 ∣ ∀ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 } | |
| 7 | df-iin | ⊢ ∩ 𝑥 ∈ 𝐵 𝐷 = { 𝑡 ∣ ∀ 𝑥 ∈ 𝐵 𝑡 ∈ 𝐷 } | |
| 8 | 5 6 7 | 3eqtr4i | ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷 |