Metamath Proof Explorer


Theorem iineq12i

Description: Equality theorem for indexed intersection. Inference version. General version of iineq1i . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses iineq12i.1 𝐴 = 𝐵
iineq12i.2 𝐶 = 𝐷
Assertion iineq12i 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷

Proof

Step Hyp Ref Expression
1 iineq12i.1 𝐴 = 𝐵
2 iineq12i.2 𝐶 = 𝐷
3 2 eleq2i ( 𝑡𝐶𝑡𝐷 )
4 1 3 raleqbii ( ∀ 𝑥𝐴 𝑡𝐶 ↔ ∀ 𝑥𝐵 𝑡𝐷 )
5 4 abbii { 𝑡 ∣ ∀ 𝑥𝐴 𝑡𝐶 } = { 𝑡 ∣ ∀ 𝑥𝐵 𝑡𝐷 }
6 df-iin 𝑥𝐴 𝐶 = { 𝑡 ∣ ∀ 𝑥𝐴 𝑡𝐶 }
7 df-iin 𝑥𝐵 𝐷 = { 𝑡 ∣ ∀ 𝑥𝐵 𝑡𝐷 }
8 5 6 7 3eqtr4i 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷