Description: Equivalent wff's and equal domains yield equal restricted iotas. Inference version. (Contributed by GG, 1-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | riotaeqbii.1 | ⊢ 𝐴 = 𝐵 | |
riotaeqbii.2 | ⊢ ( 𝜑 ↔ 𝜓 ) | ||
Assertion | riotaeqbii | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑥 ∈ 𝐵 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaeqbii.1 | ⊢ 𝐴 = 𝐵 | |
2 | riotaeqbii.2 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
3 | 1 | eleq2i | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) |
4 | 3 2 | anbi12i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) |
5 | 4 | iotabii | ⊢ ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) |
6 | df-riota | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
7 | df-riota | ⊢ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) | |
8 | 5 6 7 | 3eqtr4i | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑥 ∈ 𝐵 𝜓 ) |