Metamath Proof Explorer


Theorem riotaeqbii

Description: Equivalent wff's and equal domains yield equal restricted iotas. Inference version. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses riotaeqbii.1 𝐴 = 𝐵
riotaeqbii.2 ( 𝜑𝜓 )
Assertion riotaeqbii ( 𝑥𝐴 𝜑 ) = ( 𝑥𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 riotaeqbii.1 𝐴 = 𝐵
2 riotaeqbii.2 ( 𝜑𝜓 )
3 1 eleq2i ( 𝑥𝐴𝑥𝐵 )
4 3 2 anbi12i ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐵𝜓 ) )
5 4 iotabii ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) ) = ( ℩ 𝑥 ( 𝑥𝐵𝜓 ) )
6 df-riota ( 𝑥𝐴 𝜑 ) = ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) )
7 df-riota ( 𝑥𝐵 𝜓 ) = ( ℩ 𝑥 ( 𝑥𝐵𝜓 ) )
8 5 6 7 3eqtr4i ( 𝑥𝐴 𝜑 ) = ( 𝑥𝐵 𝜓 )