Metamath Proof Explorer


Theorem riotaeqi

Description: Equal domains yield equal restricted iotas. Inference version. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis riotaeqi.1 𝐴 = 𝐵
Assertion riotaeqi ( 𝑥𝐴 𝜑 ) = ( 𝑥𝐵 𝜑 )

Proof

Step Hyp Ref Expression
1 riotaeqi.1 𝐴 = 𝐵
2 biid ( 𝜑𝜑 )
3 1 2 riotaeqbii ( 𝑥𝐴 𝜑 ) = ( 𝑥𝐵 𝜑 )