Metamath Proof Explorer


Theorem riotaeqi

Description: Equal domains yield equal restricted iotas. Inference version. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis riotaeqi.1 A = B
Assertion riotaeqi ι x A | φ = ι x B | φ

Proof

Step Hyp Ref Expression
1 riotaeqi.1 A = B
2 biid φ φ
3 1 2 riotaeqbii ι x A | φ = ι x B | φ