Metamath Proof Explorer


Theorem ixpeq1i

Description: Equality inference for infinite Cartesian product. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis ixpeq1i.1 A = B
Assertion ixpeq1i x A C = x B C

Proof

Step Hyp Ref Expression
1 ixpeq1i.1 A = B
2 1 eleq2i x A x B
3 2 abbii x | x A = x | x B
4 3 fneq2i f Fn x | x A f Fn x | x B
5 2 imbi1i x A f x C x B f x C
6 5 ralbii2 x A f x C x B f x C
7 4 6 anbi12i f Fn x | x A x A f x C f Fn x | x B x B f x C
8 7 abbii f | f Fn x | x A x A f x C = f | f Fn x | x B x B f x C
9 df-ixp x A C = f | f Fn x | x A x A f x C
10 df-ixp x B C = f | f Fn x | x B x B f x C
11 8 9 10 3eqtr4i x A C = x B C