Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Gino Giotto
Equality theorems.
Inference versions.
ixpeq1i
Next ⟩
ixpeq12i
Metamath Proof Explorer
Ascii
Unicode
Theorem
ixpeq1i
Description:
Equality inference for infinite Cartesian product.
(Contributed by
GG
, 1-Sep-2025)
Ref
Expression
Hypothesis
ixpeq1i.1
⊢
A
=
B
Assertion
ixpeq1i
⊢
⨉
x
∈
A
C
=
⨉
x
∈
B
C
Proof
Step
Hyp
Ref
Expression
1
ixpeq1i.1
⊢
A
=
B
2
1
eleq2i
⊢
x
∈
A
↔
x
∈
B
3
2
abbii
⊢
x
|
x
∈
A
=
x
|
x
∈
B
4
3
fneq2i
⊢
f
Fn
x
|
x
∈
A
↔
f
Fn
x
|
x
∈
B
5
2
imbi1i
⊢
x
∈
A
→
f
⁡
x
∈
C
↔
x
∈
B
→
f
⁡
x
∈
C
6
5
ralbii2
⊢
∀
x
∈
A
f
⁡
x
∈
C
↔
∀
x
∈
B
f
⁡
x
∈
C
7
4
6
anbi12i
⊢
f
Fn
x
|
x
∈
A
∧
∀
x
∈
A
f
⁡
x
∈
C
↔
f
Fn
x
|
x
∈
B
∧
∀
x
∈
B
f
⁡
x
∈
C
8
7
abbii
⊢
f
|
f
Fn
x
|
x
∈
A
∧
∀
x
∈
A
f
⁡
x
∈
C
=
f
|
f
Fn
x
|
x
∈
B
∧
∀
x
∈
B
f
⁡
x
∈
C
9
df-ixp
⊢
⨉
x
∈
A
C
=
f
|
f
Fn
x
|
x
∈
A
∧
∀
x
∈
A
f
⁡
x
∈
C
10
df-ixp
⊢
⨉
x
∈
B
C
=
f
|
f
Fn
x
|
x
∈
B
∧
∀
x
∈
B
f
⁡
x
∈
C
11
8
9
10
3eqtr4i
⊢
⨉
x
∈
A
C
=
⨉
x
∈
B
C