Metamath Proof Explorer


Theorem ixpeq12i

Description: Equality inference for infinite Cartesian product. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses ixpeq12i.1 A = B
ixpeq12i.2 C = D
Assertion ixpeq12i x A C = x B D

Proof

Step Hyp Ref Expression
1 ixpeq12i.1 A = B
2 ixpeq12i.2 C = D
3 2 rgenw x A C = D
4 ixpeq2 x A C = D x A C = x A D
5 3 4 ax-mp x A C = x A D
6 1 ixpeq1i x A D = x B D
7 5 6 eqtri x A C = x B D