Metamath Proof Explorer


Theorem sumeq2si

Description: Equality inference for sum. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis sumeq2si.1 B = C
Assertion sumeq2si k A B = k A C

Proof

Step Hyp Ref Expression
1 sumeq2si.1 B = C
2 1 csbeq2i n / k B = n / k C
3 ifeq1 n / k B = n / k C if n A n / k B 0 = if n A n / k C 0
4 2 3 ax-mp if n A n / k B 0 = if n A n / k C 0
5 4 mpteq2i n if n A n / k B 0 = n if n A n / k C 0
6 seqeq3 n if n A n / k B 0 = n if n A n / k C 0 seq m + n if n A n / k B 0 = seq m + n if n A n / k C 0
7 5 6 ax-mp seq m + n if n A n / k B 0 = seq m + n if n A n / k C 0
8 7 breq1i seq m + n if n A n / k B 0 x seq m + n if n A n / k C 0 x
9 8 anbi2i A m seq m + n if n A n / k B 0 x A m seq m + n if n A n / k C 0 x
10 9 rexbii m A m seq m + n if n A n / k B 0 x m A m seq m + n if n A n / k C 0 x
11 1 csbeq2i f n / k B = f n / k C
12 11 mpteq2i n f n / k B = n f n / k C
13 seqeq3 n f n / k B = n f n / k C seq 1 + n f n / k B = seq 1 + n f n / k C
14 12 13 ax-mp seq 1 + n f n / k B = seq 1 + n f n / k C
15 14 fveq1i seq 1 + n f n / k B m = seq 1 + n f n / k C m
16 15 eqeq2i x = seq 1 + n f n / k B m x = seq 1 + n f n / k C m
17 16 anbi2i f : 1 m 1-1 onto A x = seq 1 + n f n / k B m f : 1 m 1-1 onto A x = seq 1 + n f n / k C m
18 17 exbii f f : 1 m 1-1 onto A x = seq 1 + n f n / k B m f f : 1 m 1-1 onto A x = seq 1 + n f n / k C m
19 18 rexbii m f f : 1 m 1-1 onto A x = seq 1 + n f n / k B m m f f : 1 m 1-1 onto A x = seq 1 + n f n / k C m
20 10 19 orbi12i m A m seq m + n if n A n / k B 0 x m f f : 1 m 1-1 onto A x = seq 1 + n f n / k B m m A m seq m + n if n A n / k C 0 x m f f : 1 m 1-1 onto A x = seq 1 + n f n / k C m
21 20 iotabii ι x | m A m seq m + n if n A n / k B 0 x m f f : 1 m 1-1 onto A x = seq 1 + n f n / k B m = ι x | m A m seq m + n if n A n / k C 0 x m f f : 1 m 1-1 onto A x = seq 1 + n f n / k C m
22 df-sum k A B = ι x | m A m seq m + n if n A n / k B 0 x m f f : 1 m 1-1 onto A x = seq 1 + n f n / k B m
23 df-sum k A C = ι x | m A m seq m + n if n A n / k C 0 x m f f : 1 m 1-1 onto A x = seq 1 + n f n / k C m
24 21 22 23 3eqtr4i k A B = k A C