Metamath Proof Explorer


Theorem seqeq3

Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013)

Ref Expression
Assertion seqeq3 F=GseqM+˙F=seqM+˙G

Proof

Step Hyp Ref Expression
1 fveq1 F=GFx+1=Gx+1
2 1 oveq2d F=Gy+˙Fx+1=y+˙Gx+1
3 2 opeq2d F=Gx+1y+˙Fx+1=x+1y+˙Gx+1
4 3 mpoeq3dv F=GxV,yVx+1y+˙Fx+1=xV,yVx+1y+˙Gx+1
5 fveq1 F=GFM=GM
6 5 opeq2d F=GMFM=MGM
7 rdgeq12 xV,yVx+1y+˙Fx+1=xV,yVx+1y+˙Gx+1MFM=MGMrecxV,yVx+1y+˙Fx+1MFM=recxV,yVx+1y+˙Gx+1MGM
8 4 6 7 syl2anc F=GrecxV,yVx+1y+˙Fx+1MFM=recxV,yVx+1y+˙Gx+1MGM
9 8 imaeq1d F=GrecxV,yVx+1y+˙Fx+1MFMω=recxV,yVx+1y+˙Gx+1MGMω
10 df-seq seqM+˙F=recxV,yVx+1y+˙Fx+1MFMω
11 df-seq seqM+˙G=recxV,yVx+1y+˙Gx+1MGMω
12 9 10 11 3eqtr4g F=GseqM+˙F=seqM+˙G