Step |
Hyp |
Ref |
Expression |
1 |
|
fveq1 |
⊢ ( 𝐹 = 𝐺 → ( 𝐹 ‘ ( 𝑥 + 1 ) ) = ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝐹 = 𝐺 → ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) = ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) ) |
3 |
2
|
opeq2d |
⊢ ( 𝐹 = 𝐺 → ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ = ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) |
4 |
3
|
mpoeq3dv |
⊢ ( 𝐹 = 𝐺 → ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) ) |
5 |
|
fveq1 |
⊢ ( 𝐹 = 𝐺 → ( 𝐹 ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) |
6 |
5
|
opeq2d |
⊢ ( 𝐹 = 𝐺 → ⟨ 𝑀 , ( 𝐹 ‘ 𝑀 ) ⟩ = ⟨ 𝑀 , ( 𝐺 ‘ 𝑀 ) ⟩ ) |
7 |
|
rdgeq12 |
⊢ ( ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) ∧ ⟨ 𝑀 , ( 𝐹 ‘ 𝑀 ) ⟩ = ⟨ 𝑀 , ( 𝐺 ‘ 𝑀 ) ⟩ ) → rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹 ‘ 𝑀 ) ⟩ ) = rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐺 ‘ 𝑀 ) ⟩ ) ) |
8 |
4 6 7
|
syl2anc |
⊢ ( 𝐹 = 𝐺 → rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹 ‘ 𝑀 ) ⟩ ) = rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐺 ‘ 𝑀 ) ⟩ ) ) |
9 |
8
|
imaeq1d |
⊢ ( 𝐹 = 𝐺 → ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹 ‘ 𝑀 ) ⟩ ) “ ω ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐺 ‘ 𝑀 ) ⟩ ) “ ω ) ) |
10 |
|
df-seq |
⊢ seq 𝑀 ( + , 𝐹 ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹 ‘ 𝑀 ) ⟩ ) “ ω ) |
11 |
|
df-seq |
⊢ seq 𝑀 ( + , 𝐺 ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐺 ‘ 𝑀 ) ⟩ ) “ ω ) |
12 |
9 10 11
|
3eqtr4g |
⊢ ( 𝐹 = 𝐺 → seq 𝑀 ( + , 𝐹 ) = seq 𝑀 ( + , 𝐺 ) ) |