| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝐹  =  𝐺  →  ( 𝐹 ‘ ( 𝑥  +  1 ) )  =  ( 𝐺 ‘ ( 𝑥  +  1 ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							oveq2d | 
							⊢ ( 𝐹  =  𝐺  →  ( 𝑦  +  ( 𝐹 ‘ ( 𝑥  +  1 ) ) )  =  ( 𝑦  +  ( 𝐺 ‘ ( 𝑥  +  1 ) ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							opeq2d | 
							⊢ ( 𝐹  =  𝐺  →  〈 ( 𝑥  +  1 ) ,  ( 𝑦  +  ( 𝐹 ‘ ( 𝑥  +  1 ) ) ) 〉  =  〈 ( 𝑥  +  1 ) ,  ( 𝑦  +  ( 𝐺 ‘ ( 𝑥  +  1 ) ) ) 〉 )  | 
						
						
							| 4 | 
							
								3
							 | 
							mpoeq3dv | 
							⊢ ( 𝐹  =  𝐺  →  ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +  1 ) ,  ( 𝑦  +  ( 𝐹 ‘ ( 𝑥  +  1 ) ) ) 〉 )  =  ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +  1 ) ,  ( 𝑦  +  ( 𝐺 ‘ ( 𝑥  +  1 ) ) ) 〉 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝐹  =  𝐺  →  ( 𝐹 ‘ 𝑀 )  =  ( 𝐺 ‘ 𝑀 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							opeq2d | 
							⊢ ( 𝐹  =  𝐺  →  〈 𝑀 ,  ( 𝐹 ‘ 𝑀 ) 〉  =  〈 𝑀 ,  ( 𝐺 ‘ 𝑀 ) 〉 )  | 
						
						
							| 7 | 
							
								
							 | 
							rdgeq12 | 
							⊢ ( ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +  1 ) ,  ( 𝑦  +  ( 𝐹 ‘ ( 𝑥  +  1 ) ) ) 〉 )  =  ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +  1 ) ,  ( 𝑦  +  ( 𝐺 ‘ ( 𝑥  +  1 ) ) ) 〉 )  ∧  〈 𝑀 ,  ( 𝐹 ‘ 𝑀 ) 〉  =  〈 𝑀 ,  ( 𝐺 ‘ 𝑀 ) 〉 )  →  rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +  1 ) ,  ( 𝑦  +  ( 𝐹 ‘ ( 𝑥  +  1 ) ) ) 〉 ) ,  〈 𝑀 ,  ( 𝐹 ‘ 𝑀 ) 〉 )  =  rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +  1 ) ,  ( 𝑦  +  ( 𝐺 ‘ ( 𝑥  +  1 ) ) ) 〉 ) ,  〈 𝑀 ,  ( 𝐺 ‘ 𝑀 ) 〉 ) )  | 
						
						
							| 8 | 
							
								4 6 7
							 | 
							syl2anc | 
							⊢ ( 𝐹  =  𝐺  →  rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +  1 ) ,  ( 𝑦  +  ( 𝐹 ‘ ( 𝑥  +  1 ) ) ) 〉 ) ,  〈 𝑀 ,  ( 𝐹 ‘ 𝑀 ) 〉 )  =  rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +  1 ) ,  ( 𝑦  +  ( 𝐺 ‘ ( 𝑥  +  1 ) ) ) 〉 ) ,  〈 𝑀 ,  ( 𝐺 ‘ 𝑀 ) 〉 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							imaeq1d | 
							⊢ ( 𝐹  =  𝐺  →  ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +  1 ) ,  ( 𝑦  +  ( 𝐹 ‘ ( 𝑥  +  1 ) ) ) 〉 ) ,  〈 𝑀 ,  ( 𝐹 ‘ 𝑀 ) 〉 )  “  ω )  =  ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +  1 ) ,  ( 𝑦  +  ( 𝐺 ‘ ( 𝑥  +  1 ) ) ) 〉 ) ,  〈 𝑀 ,  ( 𝐺 ‘ 𝑀 ) 〉 )  “  ω ) )  | 
						
						
							| 10 | 
							
								
							 | 
							df-seq | 
							⊢ seq 𝑀 (  +  ,  𝐹 )  =  ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +  1 ) ,  ( 𝑦  +  ( 𝐹 ‘ ( 𝑥  +  1 ) ) ) 〉 ) ,  〈 𝑀 ,  ( 𝐹 ‘ 𝑀 ) 〉 )  “  ω )  | 
						
						
							| 11 | 
							
								
							 | 
							df-seq | 
							⊢ seq 𝑀 (  +  ,  𝐺 )  =  ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +  1 ) ,  ( 𝑦  +  ( 𝐺 ‘ ( 𝑥  +  1 ) ) ) 〉 ) ,  〈 𝑀 ,  ( 𝐺 ‘ 𝑀 ) 〉 )  “  ω )  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							3eqtr4g | 
							⊢ ( 𝐹  =  𝐺  →  seq 𝑀 (  +  ,  𝐹 )  =  seq 𝑀 (  +  ,  𝐺 ) )  |