Metamath Proof Explorer


Theorem sumeq12si

Description: Equality inference for sum. General version of sumeq2si . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses sumeq12si.1 A = B
sumeq12si.2 C = D
Assertion sumeq12si x A C = x B D

Proof

Step Hyp Ref Expression
1 sumeq12si.1 A = B
2 sumeq12si.2 C = D
3 1 sumeq1i x A C = x B C
4 2 sumeq2si x B C = x B D
5 3 4 eqtri x A C = x B D