Metamath Proof Explorer


Theorem sumeq12si

Description: Equality inference for sum. General version of sumeq2si . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses sumeq12si.1
|- A = B
sumeq12si.2
|- C = D
Assertion sumeq12si
|- sum_ x e. A C = sum_ x e. B D

Proof

Step Hyp Ref Expression
1 sumeq12si.1
 |-  A = B
2 sumeq12si.2
 |-  C = D
3 1 sumeq1i
 |-  sum_ x e. A C = sum_ x e. B C
4 2 sumeq2si
 |-  sum_ x e. B C = sum_ x e. B D
5 3 4 eqtri
 |-  sum_ x e. A C = sum_ x e. B D