Metamath Proof Explorer


Theorem sumeq12si

Description: Equality inference for sum. General version of sumeq2si . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses sumeq12si.1 𝐴 = 𝐵
sumeq12si.2 𝐶 = 𝐷
Assertion sumeq12si Σ 𝑥𝐴 𝐶 = Σ 𝑥𝐵 𝐷

Proof

Step Hyp Ref Expression
1 sumeq12si.1 𝐴 = 𝐵
2 sumeq12si.2 𝐶 = 𝐷
3 1 sumeq1i Σ 𝑥𝐴 𝐶 = Σ 𝑥𝐵 𝐶
4 2 sumeq2si Σ 𝑥𝐵 𝐶 = Σ 𝑥𝐵 𝐷
5 3 4 eqtri Σ 𝑥𝐴 𝐶 = Σ 𝑥𝐵 𝐷