Metamath Proof Explorer


Theorem prodeq2si

Description: Equality inference for product. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis prodeq2si.1 B = C
Assertion prodeq2si k A B = k A C

Proof

Step Hyp Ref Expression
1 prodeq2si.1 B = C
2 biid A m A m
3 ifeq1 B = C if k A B 1 = if k A C 1
4 1 3 ax-mp if k A B 1 = if k A C 1
5 4 mpteq2i k if k A B 1 = k if k A C 1
6 seqeq3 k if k A B 1 = k if k A C 1 seq n × k if k A B 1 = seq n × k if k A C 1
7 5 6 ax-mp seq n × k if k A B 1 = seq n × k if k A C 1
8 7 breq1i seq n × k if k A B 1 y seq n × k if k A C 1 y
9 8 anbi2i y 0 seq n × k if k A B 1 y y 0 seq n × k if k A C 1 y
10 9 exbii y y 0 seq n × k if k A B 1 y y y 0 seq n × k if k A C 1 y
11 10 rexbii n m y y 0 seq n × k if k A B 1 y n m y y 0 seq n × k if k A C 1 y
12 seqeq3 k if k A B 1 = k if k A C 1 seq m × k if k A B 1 = seq m × k if k A C 1
13 5 12 ax-mp seq m × k if k A B 1 = seq m × k if k A C 1
14 13 breq1i seq m × k if k A B 1 x seq m × k if k A C 1 x
15 2 11 14 3anbi123i A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x
16 15 rexbii m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x
17 1 csbeq2i f n / k B = f n / k C
18 17 mpteq2i n f n / k B = n f n / k C
19 seqeq3 n f n / k B = n f n / k C seq 1 × n f n / k B = seq 1 × n f n / k C
20 18 19 ax-mp seq 1 × n f n / k B = seq 1 × n f n / k C
21 20 fveq1i seq 1 × n f n / k B m = seq 1 × n f n / k C m
22 21 eqeq2i x = seq 1 × n f n / k B m x = seq 1 × n f n / k C m
23 22 anbi2i f : 1 m 1-1 onto A x = seq 1 × n f n / k B m f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
24 23 exbii f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
25 24 rexbii m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
26 16 25 orbi12i m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
27 26 iotabii ι x | m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m = ι x | m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
28 df-prod k A B = ι x | m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m
29 df-prod k A C = ι x | m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
30 27 28 29 3eqtr4i k A B = k A C