Metamath Proof Explorer


Definition df-prod

Description: Define the product of a series with an index set of integers A . This definition takes most of the aspects of df-sum and adapts them for multiplication instead of addition. However, we insist that in the infinite case, there is a nonzero tail of the sequence. This ensures that the convergence criteria match those of infinite sums. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Assertion df-prod kAB=ιx|mAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmff:1m1-1 ontoAx=seq1×nfn/kBm

Detailed syntax breakdown

Step Hyp Ref Expression
0 vk setvark
1 cA classA
2 cB classB
3 1 2 0 cprod classkAB
4 vx setvarx
5 vm setvarm
6 cz class
7 cuz class
8 5 cv setvarm
9 8 7 cfv classm
10 1 9 wss wffAm
11 vn setvarn
12 vy setvary
13 12 cv setvary
14 cc0 class0
15 13 14 wne wffy0
16 11 cv setvarn
17 cmul class×
18 0 cv setvark
19 18 1 wcel wffkA
20 c1 class1
21 19 2 20 cif classifkAB1
22 0 6 21 cmpt classkifkAB1
23 17 22 16 cseq classseqn×kifkAB1
24 cli class
25 23 13 24 wbr wffseqn×kifkAB1y
26 15 25 wa wffy0seqn×kifkAB1y
27 26 12 wex wffyy0seqn×kifkAB1y
28 27 11 9 wrex wffnmyy0seqn×kifkAB1y
29 17 22 8 cseq classseqm×kifkAB1
30 4 cv setvarx
31 29 30 24 wbr wffseqm×kifkAB1x
32 10 28 31 w3a wffAmnmyy0seqn×kifkAB1yseqm×kifkAB1x
33 32 5 6 wrex wffmAmnmyy0seqn×kifkAB1yseqm×kifkAB1x
34 cn class
35 vf setvarf
36 35 cv setvarf
37 cfz class
38 20 8 37 co class1m
39 38 1 36 wf1o wfff:1m1-1 ontoA
40 16 36 cfv classfn
41 0 40 2 csb classfn/kB
42 11 34 41 cmpt classnfn/kB
43 17 42 20 cseq classseq1×nfn/kB
44 8 43 cfv classseq1×nfn/kBm
45 30 44 wceq wffx=seq1×nfn/kBm
46 39 45 wa wfff:1m1-1 ontoAx=seq1×nfn/kBm
47 46 35 wex wffff:1m1-1 ontoAx=seq1×nfn/kBm
48 47 5 34 wrex wffmff:1m1-1 ontoAx=seq1×nfn/kBm
49 33 48 wo wffmAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmff:1m1-1 ontoAx=seq1×nfn/kBm
50 49 4 cio classιx|mAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmff:1m1-1 ontoAx=seq1×nfn/kBm
51 3 50 wceq wffkAB=ιx|mAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmff:1m1-1 ontoAx=seq1×nfn/kBm