Metamath Proof Explorer


Theorem prodex

Description: A product is a set. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Assertion prodex kABV

Proof

Step Hyp Ref Expression
1 df-prod kAB=ιx|mAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmff:1m1-1 ontoAx=seq1×nfn/kBm
2 iotaex ιx|mAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmff:1m1-1 ontoAx=seq1×nfn/kBmV
3 1 2 eqeltri kABV