Metamath Proof Explorer
Description: Equality inference for infinite Cartesian product. (Contributed by GG, 1-Sep-2025)
|
|
Ref |
Expression |
|
Hypotheses |
ixpeq12i.1 |
⊢ 𝐴 = 𝐵 |
|
|
ixpeq12i.2 |
⊢ 𝐶 = 𝐷 |
|
Assertion |
ixpeq12i |
⊢ X 𝑥 ∈ 𝐴 𝐶 = X 𝑥 ∈ 𝐵 𝐷 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ixpeq12i.1 |
⊢ 𝐴 = 𝐵 |
| 2 |
|
ixpeq12i.2 |
⊢ 𝐶 = 𝐷 |
| 3 |
2
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 𝐶 = 𝐷 |
| 4 |
|
ixpeq2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 = 𝐷 → X 𝑥 ∈ 𝐴 𝐶 = X 𝑥 ∈ 𝐴 𝐷 ) |
| 5 |
3 4
|
ax-mp |
⊢ X 𝑥 ∈ 𝐴 𝐶 = X 𝑥 ∈ 𝐴 𝐷 |
| 6 |
1
|
ixpeq1i |
⊢ X 𝑥 ∈ 𝐴 𝐷 = X 𝑥 ∈ 𝐵 𝐷 |
| 7 |
5 6
|
eqtri |
⊢ X 𝑥 ∈ 𝐴 𝐶 = X 𝑥 ∈ 𝐵 𝐷 |