Metamath Proof Explorer


Theorem ixpeq12i

Description: Equality inference for infinite Cartesian product. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses ixpeq12i.1 𝐴 = 𝐵
ixpeq12i.2 𝐶 = 𝐷
Assertion ixpeq12i X 𝑥𝐴 𝐶 = X 𝑥𝐵 𝐷

Proof

Step Hyp Ref Expression
1 ixpeq12i.1 𝐴 = 𝐵
2 ixpeq12i.2 𝐶 = 𝐷
3 2 rgenw 𝑥𝐴 𝐶 = 𝐷
4 ixpeq2 ( ∀ 𝑥𝐴 𝐶 = 𝐷X 𝑥𝐴 𝐶 = X 𝑥𝐴 𝐷 )
5 3 4 ax-mp X 𝑥𝐴 𝐶 = X 𝑥𝐴 𝐷
6 1 ixpeq1i X 𝑥𝐴 𝐷 = X 𝑥𝐵 𝐷
7 5 6 eqtri X 𝑥𝐴 𝐶 = X 𝑥𝐵 𝐷