Metamath Proof Explorer


Theorem ixpeq1i

Description: Equality inference for infinite Cartesian product. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis ixpeq1i.1 𝐴 = 𝐵
Assertion ixpeq1i X 𝑥𝐴 𝐶 = X 𝑥𝐵 𝐶

Proof

Step Hyp Ref Expression
1 ixpeq1i.1 𝐴 = 𝐵
2 1 eleq2i ( 𝑥𝐴𝑥𝐵 )
3 2 abbii { 𝑥𝑥𝐴 } = { 𝑥𝑥𝐵 }
4 3 fneq2i ( 𝑓 Fn { 𝑥𝑥𝐴 } ↔ 𝑓 Fn { 𝑥𝑥𝐵 } )
5 2 imbi1i ( ( 𝑥𝐴 → ( 𝑓𝑥 ) ∈ 𝐶 ) ↔ ( 𝑥𝐵 → ( 𝑓𝑥 ) ∈ 𝐶 ) )
6 5 ralbii2 ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥𝐵 ( 𝑓𝑥 ) ∈ 𝐶 )
7 4 6 anbi12i ( ( 𝑓 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐶 ) ↔ ( 𝑓 Fn { 𝑥𝑥𝐵 } ∧ ∀ 𝑥𝐵 ( 𝑓𝑥 ) ∈ 𝐶 ) )
8 7 abbii { 𝑓 ∣ ( 𝑓 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐶 ) } = { 𝑓 ∣ ( 𝑓 Fn { 𝑥𝑥𝐵 } ∧ ∀ 𝑥𝐵 ( 𝑓𝑥 ) ∈ 𝐶 ) }
9 df-ixp X 𝑥𝐴 𝐶 = { 𝑓 ∣ ( 𝑓 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐶 ) }
10 df-ixp X 𝑥𝐵 𝐶 = { 𝑓 ∣ ( 𝑓 Fn { 𝑥𝑥𝐵 } ∧ ∀ 𝑥𝐵 ( 𝑓𝑥 ) ∈ 𝐶 ) }
11 8 9 10 3eqtr4i X 𝑥𝐴 𝐶 = X 𝑥𝐵 𝐶