Step |
Hyp |
Ref |
Expression |
1 |
|
ixpeq1i.1 |
⊢ 𝐴 = 𝐵 |
2 |
1
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) |
3 |
2
|
abbii |
⊢ { 𝑥 ∣ 𝑥 ∈ 𝐴 } = { 𝑥 ∣ 𝑥 ∈ 𝐵 } |
4 |
3
|
fneq2i |
⊢ ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ↔ 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐵 } ) |
5 |
2
|
imbi1i |
⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
6 |
5
|
ralbii2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) |
7 |
4 6
|
anbi12i |
⊢ ( ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐵 } ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
8 |
7
|
abbii |
⊢ { 𝑓 ∣ ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) } = { 𝑓 ∣ ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐵 } ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) } |
9 |
|
df-ixp |
⊢ X 𝑥 ∈ 𝐴 𝐶 = { 𝑓 ∣ ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) } |
10 |
|
df-ixp |
⊢ X 𝑥 ∈ 𝐵 𝐶 = { 𝑓 ∣ ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐵 } ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) } |
11 |
8 9 10
|
3eqtr4i |
⊢ X 𝑥 ∈ 𝐴 𝐶 = X 𝑥 ∈ 𝐵 𝐶 |