Metamath Proof Explorer


Theorem ixpeq12i

Description: Equality inference for infinite Cartesian product. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses ixpeq12i.1
|- A = B
ixpeq12i.2
|- C = D
Assertion ixpeq12i
|- X_ x e. A C = X_ x e. B D

Proof

Step Hyp Ref Expression
1 ixpeq12i.1
 |-  A = B
2 ixpeq12i.2
 |-  C = D
3 2 rgenw
 |-  A. x e. A C = D
4 ixpeq2
 |-  ( A. x e. A C = D -> X_ x e. A C = X_ x e. A D )
5 3 4 ax-mp
 |-  X_ x e. A C = X_ x e. A D
6 1 ixpeq1i
 |-  X_ x e. A D = X_ x e. B D
7 5 6 eqtri
 |-  X_ x e. A C = X_ x e. B D