Description: Equivalent wff's and equal domains yield equal restricted iotas. Inference version. (Contributed by GG, 1-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | riotaeqbii.1 | |- A = B |
|
riotaeqbii.2 | |- ( ph <-> ps ) |
||
Assertion | riotaeqbii | |- ( iota_ x e. A ph ) = ( iota_ x e. B ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaeqbii.1 | |- A = B |
|
2 | riotaeqbii.2 | |- ( ph <-> ps ) |
|
3 | 1 | eleq2i | |- ( x e. A <-> x e. B ) |
4 | 3 2 | anbi12i | |- ( ( x e. A /\ ph ) <-> ( x e. B /\ ps ) ) |
5 | 4 | iotabii | |- ( iota x ( x e. A /\ ph ) ) = ( iota x ( x e. B /\ ps ) ) |
6 | df-riota | |- ( iota_ x e. A ph ) = ( iota x ( x e. A /\ ph ) ) |
|
7 | df-riota | |- ( iota_ x e. B ps ) = ( iota x ( x e. B /\ ps ) ) |
|
8 | 5 6 7 | 3eqtr4i | |- ( iota_ x e. A ph ) = ( iota_ x e. B ps ) |