Metamath Proof Explorer


Theorem riotaeqbii

Description: Equivalent wff's and equal domains yield equal restricted iotas. Inference version. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses riotaeqbii.1
|- A = B
riotaeqbii.2
|- ( ph <-> ps )
Assertion riotaeqbii
|- ( iota_ x e. A ph ) = ( iota_ x e. B ps )

Proof

Step Hyp Ref Expression
1 riotaeqbii.1
 |-  A = B
2 riotaeqbii.2
 |-  ( ph <-> ps )
3 1 eleq2i
 |-  ( x e. A <-> x e. B )
4 3 2 anbi12i
 |-  ( ( x e. A /\ ph ) <-> ( x e. B /\ ps ) )
5 4 iotabii
 |-  ( iota x ( x e. A /\ ph ) ) = ( iota x ( x e. B /\ ps ) )
6 df-riota
 |-  ( iota_ x e. A ph ) = ( iota x ( x e. A /\ ph ) )
7 df-riota
 |-  ( iota_ x e. B ps ) = ( iota x ( x e. B /\ ps ) )
8 5 6 7 3eqtr4i
 |-  ( iota_ x e. A ph ) = ( iota_ x e. B ps )